| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							⊢ 𝑀  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							⊢ 𝑁  ∈  ℕ  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 }  | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotth.e | 
							⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) }  | 
						
						
							| 7 | 
							
								
							 | 
							nnaddcl | 
							⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  +  𝑁 )  ∈  ℕ )  | 
						
						
							| 8 | 
							
								1 2 7
							 | 
							mp2an | 
							⊢ ( 𝑀  +  𝑁 )  ∈  ℕ  | 
						
						
							| 9 | 
							
								
							 | 
							elnnuz | 
							⊢ ( ( 𝑀  +  𝑁 )  ∈  ℕ  ↔  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpbi | 
							⊢ ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 1 )  | 
						
						
							| 11 | 
							
								
							 | 
							eluzfz1 | 
							⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							ax-mp | 
							⊢ 1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 14 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 15 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 16 | 
							
								14 15
							 | 
							lenlti | 
							⊢ ( 0  ≤  1  ↔  ¬  1  <  0 )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							mpbi | 
							⊢ ¬  1  <  0  | 
						
						
							| 18 | 
							
								
							 | 
							ltsub13 | 
							⊢ ( ( 0  ∈  ℝ  ∧  0  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  <  ( 0  −  1 )  ↔  1  <  ( 0  −  0 ) ) )  | 
						
						
							| 19 | 
							
								14 14 15 18
							 | 
							mp3an | 
							⊢ ( 0  <  ( 0  −  1 )  ↔  1  <  ( 0  −  0 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							0m0e0 | 
							⊢ ( 0  −  0 )  =  0  | 
						
						
							| 21 | 
							
								20
							 | 
							breq2i | 
							⊢ ( 1  <  ( 0  −  0 )  ↔  1  <  0 )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							bitri | 
							⊢ ( 0  <  ( 0  −  1 )  ↔  1  <  0 )  | 
						
						
							| 23 | 
							
								17 22
							 | 
							mtbir | 
							⊢ ¬  0  <  ( 0  −  1 )  | 
						
						
							| 24 | 
							
								
							 | 
							1m1e0 | 
							⊢ ( 1  −  1 )  =  0  | 
						
						
							| 25 | 
							
								24
							 | 
							fveq2i | 
							⊢ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  | 
						
						
							| 26 | 
							
								1 2 3 4 5
							 | 
							ballotlemfval0 | 
							⊢ ( 𝐶  ∈  𝑂  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  =  0 )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							eqtrid | 
							⊢ ( 𝐶  ∈  𝑂  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  =  0 )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq1d | 
							⊢ ( 𝐶  ∈  𝑂  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 )  =  ( 0  −  1 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							breq2d | 
							⊢ ( 𝐶  ∈  𝑂  →  ( 0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 )  ↔  0  <  ( 0  −  1 ) ) )  | 
						
						
							| 30 | 
							
								23 29
							 | 
							mtbiri | 
							⊢ ( 𝐶  ∈  𝑂  →  ¬  0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  ¬  1  ∈  𝐶 )  →  ¬  0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  𝐶  ∈  𝑂 )  | 
						
						
							| 33 | 
							
								
							 | 
							1nn | 
							⊢ 1  ∈  ℕ  | 
						
						
							| 34 | 
							
								33
							 | 
							a1i | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  1  ∈  ℕ )  | 
						
						
							| 35 | 
							
								1 2 3 4 5 32 34
							 | 
							ballotlemfp1 | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( ¬  1  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) )  ∧  ( 1  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  +  1 ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							simpld | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ¬  1  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) ) )  | 
						
						
							| 37 | 
							
								12 36
							 | 
							mpan2 | 
							⊢ ( 𝐶  ∈  𝑂  →  ( ¬  1  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							imp | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  ¬  1  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							breq2d | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  ¬  1  ∈  𝐶 )  →  ( 0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  ↔  0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) ) )  | 
						
						
							| 40 | 
							
								31 39
							 | 
							mtbird | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  ¬  1  ∈  𝐶 )  →  ¬  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  1  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							breq2d | 
							⊢ ( 𝑖  =  1  →  ( 0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							notbid | 
							⊢ ( 𝑖  =  1  →  ( ¬  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  ¬  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							rspcev | 
							⊢ ( ( 1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ¬  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 ) )  →  ∃ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ¬  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 45 | 
							
								12 40 44
							 | 
							sylancr | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  ¬  1  ∈  𝐶 )  →  ∃ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ¬  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							rexnal | 
							⊢ ( ∃ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ¬  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  ¬  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							sylib | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  ¬  1  ∈  𝐶 )  →  ¬  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 48 | 
							
								1 2 3 4 5 6
							 | 
							ballotleme | 
							⊢ ( 𝐶  ∈  𝐸  ↔  ( 𝐶  ∈  𝑂  ∧  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							simprbi | 
							⊢ ( 𝐶  ∈  𝐸  →  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							nsyl | 
							⊢ ( ( 𝐶  ∈  𝑂  ∧  ¬  1  ∈  𝐶 )  →  ¬  𝐶  ∈  𝐸 )  | 
						
						
							| 51 | 
							
								50
							 | 
							ex | 
							⊢ ( 𝐶  ∈  𝑂  →  ( ¬  1  ∈  𝐶  →  ¬  𝐶  ∈  𝐸 ) )  |