Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
eldifi |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝐶 ∈ 𝑂 ) |
9 |
1
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝑀 ∈ ℕ ) |
10 |
2
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝑁 ∈ ℕ ) |
11 |
9 10
|
nnaddcld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
12 |
1 2 3 4 5 6
|
ballotlemodife |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ↔ ( 𝐶 ∈ 𝑂 ∧ ∃ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ) ) |
13 |
12
|
simprbi |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ∃ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ) |
14 |
2
|
nnrei |
⊢ 𝑁 ∈ ℝ |
15 |
1
|
nnrei |
⊢ 𝑀 ∈ ℝ |
16 |
14 15
|
posdifi |
⊢ ( 𝑁 < 𝑀 ↔ 0 < ( 𝑀 − 𝑁 ) ) |
17 |
7 16
|
mpbi |
⊢ 0 < ( 𝑀 − 𝑁 ) |
18 |
1 2 3 4 5
|
ballotlemfmpn |
⊢ ( 𝐶 ∈ 𝑂 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑀 + 𝑁 ) ) = ( 𝑀 − 𝑁 ) ) |
19 |
8 18
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑀 + 𝑁 ) ) = ( 𝑀 − 𝑁 ) ) |
20 |
17 19
|
breqtrrid |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑀 + 𝑁 ) ) ) |
21 |
1 2 3 4 5 8 11 13 20
|
ballotlemfc0 |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ∃ 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |