Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ballotlem7 |
⊢ ( 𝑅 ↾ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) : { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } –1-1-onto→ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } |
12 |
1 2 3
|
ballotlemoex |
⊢ 𝑂 ∈ V |
13 |
|
difexg |
⊢ ( 𝑂 ∈ V → ( 𝑂 ∖ 𝐸 ) ∈ V ) |
14 |
12 13
|
ax-mp |
⊢ ( 𝑂 ∖ 𝐸 ) ∈ V |
15 |
14
|
rabex |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∈ V |
16 |
15
|
f1oen |
⊢ ( ( 𝑅 ↾ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) : { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } –1-1-onto→ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } → { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ≈ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) |
17 |
|
hasheni |
⊢ ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ≈ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } → ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) = ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) |
18 |
11 16 17
|
mp2b |
⊢ ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) = ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) |