Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotlemfp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑂 ) |
7 |
|
ballotlemfp1.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ ) |
8 |
|
ballotlemfc0.3 |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ) |
9 |
|
ballotlemfc0.4 |
⊢ ( 𝜑 → 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) |
11 |
10
|
breq1d |
⊢ ( 𝑖 = 𝑘 → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) |
12 |
11
|
elrab |
⊢ ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ↔ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) |
13 |
12
|
anbi1i |
⊢ ( ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ↔ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) |
14 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) |
15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
16 |
15
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
17 |
|
fzssuz |
⊢ ( 1 ... 𝐽 ) ⊆ ( ℤ≥ ‘ 1 ) |
18 |
|
uzssz |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ |
19 |
17 18
|
sstri |
⊢ ( 1 ... 𝐽 ) ⊆ ℤ |
20 |
|
zssre |
⊢ ℤ ⊆ ℝ |
21 |
19 20
|
sstri |
⊢ ( 1 ... 𝐽 ) ⊆ ℝ |
22 |
21
|
sseli |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ℝ ) |
23 |
22
|
ltp1d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 < ( 𝑘 + 1 ) ) |
24 |
|
1red |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 1 ∈ ℝ ) |
25 |
22 24
|
readdcld |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ℝ ) |
26 |
22 25
|
ltnled |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( 𝑘 < ( 𝑘 + 1 ) ↔ ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
27 |
23 26
|
mpbid |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
28 |
16 27
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
29 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) |
30 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → 𝑘 = 𝐽 ) |
32 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
33 |
32
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) ) |
34 |
|
elnnuz |
⊢ ( 𝐽 ∈ ℕ ↔ 𝐽 ∈ ( ℤ≥ ‘ 1 ) ) |
35 |
7 34
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( ℤ≥ ‘ 1 ) ) |
36 |
|
eluzfz2 |
⊢ ( 𝐽 ∈ ( ℤ≥ ‘ 1 ) → 𝐽 ∈ ( 1 ... 𝐽 ) ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ... 𝐽 ) ) |
38 |
|
eleq1 |
⊢ ( 𝑘 = 𝐽 → ( 𝑘 ∈ ( 1 ... 𝐽 ) ↔ 𝐽 ∈ ( 1 ... 𝐽 ) ) ) |
39 |
37 38
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 = 𝐽 → 𝑘 ∈ ( 1 ... 𝐽 ) ) ) |
40 |
39
|
anc2li |
⊢ ( 𝜑 → ( 𝑘 = 𝐽 → ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐽 ) ) ) ) |
41 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
42 |
|
fzss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ... 𝐽 ) ⊆ ( 0 ... 𝐽 ) ) |
43 |
42
|
sseld |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) ) |
44 |
41 43
|
ax-mp |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
45 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 0 ∈ ℝ ) |
46 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝐶 ∈ 𝑂 ) |
47 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝐽 ) → 𝑘 ∈ ℤ ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → 𝑘 ∈ ℤ ) |
49 |
1 2 3 4 5 46 48
|
ballotlemfelz |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ) |
50 |
49
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℝ ) |
51 |
45 50
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) |
52 |
44 51
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝐽 ) ) → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) |
53 |
40 52
|
syl6 |
⊢ ( 𝜑 → ( 𝑘 = 𝐽 → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ) |
54 |
53
|
imp |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) |
55 |
33 54
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ↔ ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) |
56 |
30 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐽 ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) |
57 |
56
|
ex |
⊢ ( 𝜑 → ( 𝑘 = 𝐽 → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) |
58 |
57
|
con2d |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 → ¬ 𝑘 = 𝐽 ) ) |
59 |
|
nn1m1nn |
⊢ ( 𝐽 ∈ ℕ → ( 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) |
60 |
7 59
|
syl |
⊢ ( 𝜑 → ( 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) |
61 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ∃ 𝑖 ∈ ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ) |
62 |
|
oveq1 |
⊢ ( 𝐽 = 1 → ( 𝐽 ... 𝐽 ) = ( 1 ... 𝐽 ) ) |
63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( 𝐽 ... 𝐽 ) = ( 1 ... 𝐽 ) ) |
64 |
7
|
nnzd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
65 |
|
fzsn |
⊢ ( 𝐽 ∈ ℤ → ( 𝐽 ... 𝐽 ) = { 𝐽 } ) |
66 |
64 65
|
syl |
⊢ ( 𝜑 → ( 𝐽 ... 𝐽 ) = { 𝐽 } ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( 𝐽 ... 𝐽 ) = { 𝐽 } ) |
68 |
63 67
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( 1 ... 𝐽 ) = { 𝐽 } ) |
69 |
68
|
rexeqdv |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( ∃ 𝑖 ∈ ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ↔ ∃ 𝑖 ∈ { 𝐽 } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ) ) |
70 |
61 69
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ∃ 𝑖 ∈ { 𝐽 } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ) |
71 |
|
fveq2 |
⊢ ( 𝑖 = 𝐽 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
72 |
71
|
breq1d |
⊢ ( 𝑖 = 𝐽 → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ≤ 0 ) ) |
73 |
72
|
rexsng |
⊢ ( 𝐽 ∈ ℕ → ( ∃ 𝑖 ∈ { 𝐽 } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ≤ 0 ) ) |
74 |
7 73
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ { 𝐽 } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ≤ 0 ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( ∃ 𝑖 ∈ { 𝐽 } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ≤ 0 ) ) |
76 |
70 75
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ≤ 0 ) |
77 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) |
78 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
79 |
1 2 3 4 5 6 64
|
ballotlemfelz |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ) |
80 |
79
|
zred |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℝ ) |
81 |
78 80
|
ltnled |
⊢ ( 𝜑 → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ↔ ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ≤ 0 ) ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ( 0 < ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ↔ ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ≤ 0 ) ) |
83 |
77 82
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐽 = 1 ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ≤ 0 ) |
84 |
76 83
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐽 = 1 ) |
85 |
|
biortn |
⊢ ( ¬ 𝐽 = 1 → ( ( 𝐽 − 1 ) ∈ ℕ ↔ ( ¬ ¬ 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) ) |
86 |
84 85
|
syl |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) ∈ ℕ ↔ ( ¬ ¬ 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) ) |
87 |
|
notnotb |
⊢ ( 𝐽 = 1 ↔ ¬ ¬ 𝐽 = 1 ) |
88 |
87
|
orbi1i |
⊢ ( ( 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ↔ ( ¬ ¬ 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) |
89 |
86 88
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) ∈ ℕ ↔ ( 𝐽 = 1 ∨ ( 𝐽 − 1 ) ∈ ℕ ) ) ) |
90 |
60 89
|
mpbird |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℕ ) |
91 |
|
elnnuz |
⊢ ( ( 𝐽 − 1 ) ∈ ℕ ↔ ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
92 |
90 91
|
sylib |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
93 |
|
elfzp1 |
⊢ ( ( 𝐽 − 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝑘 ∈ ( 1 ... ( ( 𝐽 − 1 ) + 1 ) ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = ( ( 𝐽 − 1 ) + 1 ) ) ) ) |
94 |
92 93
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... ( ( 𝐽 − 1 ) + 1 ) ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = ( ( 𝐽 − 1 ) + 1 ) ) ) ) |
95 |
7
|
nncnd |
⊢ ( 𝜑 → 𝐽 ∈ ℂ ) |
96 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
97 |
95 96
|
npcand |
⊢ ( 𝜑 → ( ( 𝐽 − 1 ) + 1 ) = 𝐽 ) |
98 |
97
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝐽 − 1 ) + 1 ) ) = ( 1 ... 𝐽 ) ) |
99 |
98
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... ( ( 𝐽 − 1 ) + 1 ) ) ↔ 𝑘 ∈ ( 1 ... 𝐽 ) ) ) |
100 |
97
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑘 = ( ( 𝐽 − 1 ) + 1 ) ↔ 𝑘 = 𝐽 ) ) |
101 |
100
|
orbi2d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = ( ( 𝐽 − 1 ) + 1 ) ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = 𝐽 ) ) ) |
102 |
94 99 101
|
3bitr3d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... 𝐽 ) ↔ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = 𝐽 ) ) ) |
103 |
|
orcom |
⊢ ( ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∨ 𝑘 = 𝐽 ) ↔ ( 𝑘 = 𝐽 ∨ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) |
104 |
102 103
|
bitrdi |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... 𝐽 ) ↔ ( 𝑘 = 𝐽 ∨ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) ) |
105 |
104
|
biimpd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( 𝑘 = 𝐽 ∨ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) ) |
106 |
|
pm5.6 |
⊢ ( ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ¬ 𝑘 = 𝐽 ) → 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ↔ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( 𝑘 = 𝐽 ∨ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) ) |
107 |
105 106
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ¬ 𝑘 = 𝐽 ) → 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) ) |
108 |
90
|
nnzd |
⊢ ( 𝜑 → ( 𝐽 − 1 ) ∈ ℤ ) |
109 |
|
1z |
⊢ 1 ∈ ℤ |
110 |
108 109
|
jctil |
⊢ ( 𝜑 → ( 1 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ) |
111 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) → 𝑘 ∈ ℤ ) |
112 |
111 109
|
jctir |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) → ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ) ) |
113 |
|
fzaddel |
⊢ ( ( ( 1 ∈ ℤ ∧ ( 𝐽 − 1 ) ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ) ) |
114 |
110 112 113
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ) ) |
115 |
114
|
biimp3a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ) |
116 |
115
|
3anidm23 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ) |
117 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
118 |
117
|
a1i |
⊢ ( 𝜑 → ( 1 + 1 ) = 2 ) |
119 |
118 97
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) = ( 2 ... 𝐽 ) ) |
120 |
119
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( 2 ... 𝐽 ) ) ) |
121 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
122 |
|
fzss1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... 𝐽 ) ⊆ ( 1 ... 𝐽 ) ) |
123 |
121 122
|
ax-mp |
⊢ ( 2 ... 𝐽 ) ⊆ ( 1 ... 𝐽 ) |
124 |
123
|
sseli |
⊢ ( ( 𝑘 + 1 ) ∈ ( 2 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
125 |
120 124
|
syl6bi |
⊢ ( 𝜑 → ( ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( ( 𝑘 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝐽 − 1 ) + 1 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
127 |
116 126
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
128 |
127
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 1 ... ( 𝐽 − 1 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
129 |
107 128
|
syld |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ¬ 𝑘 = 𝐽 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
130 |
58 129
|
sylan2d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
131 |
130
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
132 |
131
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
133 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) = ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ) |
134 |
133
|
breq1d |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ) ) |
135 |
134
|
elrab |
⊢ ( ( 𝑘 + 1 ) ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ↔ ( ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ) ) |
136 |
|
breq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 ≤ 𝑘 ↔ ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
137 |
136
|
rspccva |
⊢ ( ( ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ) → ( 𝑘 + 1 ) ≤ 𝑘 ) |
138 |
135 137
|
sylan2br |
⊢ ( ( ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ∧ ( ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ) ) → ( 𝑘 + 1 ) ≤ 𝑘 ) |
139 |
138
|
expr |
⊢ ( ( ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 → ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
140 |
139
|
con3d |
⊢ ( ( ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ¬ ( 𝑘 + 1 ) ≤ 𝑘 → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ) ) |
141 |
29 132 140
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ¬ ( 𝑘 + 1 ) ≤ 𝑘 → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ) ) |
142 |
28 141
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ) |
143 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) |
144 |
132
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
145 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → 𝜑 ) |
146 |
131
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) |
147 |
42
|
sseld |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) ) |
148 |
41 146 147
|
mpsyl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) |
149 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) → 𝐶 ∈ 𝑂 ) |
150 |
|
elfzelz |
⊢ ( ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
151 |
150
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) → ( 𝑘 + 1 ) ∈ ℤ ) |
152 |
1 2 3 4 5 149 151
|
ballotlemfelz |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
153 |
152
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
154 |
145 148 153
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
155 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → 0 ∈ ℝ ) |
156 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) |
157 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
158 |
157 44
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
159 |
130
|
imdistani |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) → ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ) |
160 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → 𝐶 ∈ 𝑂 ) |
161 |
|
elfznn |
⊢ ( ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) → ( 𝑘 + 1 ) ∈ ℕ ) |
162 |
161
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
163 |
1 2 3 4 5 160 162
|
ballotlemfp1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ( ¬ ( 𝑘 + 1 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ) ∧ ( ( 𝑘 + 1 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ) ) ) |
164 |
163
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ¬ ( 𝑘 + 1 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ) ) |
165 |
164
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ) |
166 |
159 165
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ) |
167 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ℤ ) |
168 |
167
|
zcnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 𝑘 ∈ ℂ ) |
169 |
|
1cnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → 1 ∈ ℂ ) |
170 |
168 169
|
pncand |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
171 |
170
|
fveq2d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) = ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) |
172 |
171
|
oveq1d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) |
173 |
172
|
eqeq2d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
174 |
157 173
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) − 1 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) ) |
175 |
166 174
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) |
176 |
|
0z |
⊢ 0 ∈ ℤ |
177 |
|
zlem1lt |
⊢ ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) < 0 ) ) |
178 |
49 176 177
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) < 0 ) ) |
179 |
178
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) < 0 ) ) |
180 |
|
breq1 |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) < 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) < 0 ) ) |
181 |
180
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) < 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) < 0 ) ) |
182 |
179 181
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝐽 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) − 1 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) < 0 ) ) |
183 |
145 158 175 182
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) < 0 ) ) |
184 |
156 183
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) < 0 ) |
185 |
154 155 184
|
ltled |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ) |
186 |
185
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ) |
187 |
143 144 186 138
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( 𝑘 + 1 ) ≤ 𝑘 ) |
188 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ 𝐶 ) → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
189 |
187 188
|
condan |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ 𝐶 ) |
190 |
163
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) → ( ( 𝑘 + 1 ) ∈ 𝐶 → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ) ) |
191 |
190
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ( 1 ... 𝐽 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ) |
192 |
159 191
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ) |
193 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
194 |
171
|
oveq1d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) |
195 |
194
|
eqeq2d |
⊢ ( 𝑘 ∈ ( 1 ... 𝐽 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
196 |
193 195
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘 + 1 ) − 1 ) ) + 1 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
197 |
192 196
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) |
198 |
197
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) ∧ ( 𝑘 + 1 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) |
199 |
189 198
|
mpdan |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) |
200 |
|
breq1 |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ≤ 0 ) ) |
201 |
200
|
notbid |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) → ( ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ↔ ¬ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ≤ 0 ) ) |
202 |
199 201
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘 + 1 ) ) ≤ 0 ↔ ¬ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ≤ 0 ) ) |
203 |
142 202
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ¬ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ≤ 0 ) |
204 |
15 44
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) → 𝑘 ∈ ( 0 ... 𝐽 ) ) |
205 |
204 49
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ) |
206 |
205
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ) |
207 |
|
zleltp1 |
⊢ ( ( 0 ∈ ℤ ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ 0 < ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
208 |
176 207
|
mpan |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ 0 < ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ) ) |
209 |
|
0red |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → 0 ∈ ℝ ) |
210 |
|
zre |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℝ ) |
211 |
|
1red |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → 1 ∈ ℝ ) |
212 |
210 211
|
readdcld |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ∈ ℝ ) |
213 |
209 212
|
ltnled |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( 0 < ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ↔ ¬ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ≤ 0 ) ) |
214 |
208 213
|
bitrd |
⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℤ → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ ¬ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ≤ 0 ) ) |
215 |
206 214
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ↔ ¬ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) + 1 ) ≤ 0 ) ) |
216 |
203 215
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) |
217 |
206
|
zred |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ∈ ℝ ) |
218 |
|
0red |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → 0 ∈ ℝ ) |
219 |
217 218
|
letri3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ↔ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ∧ 0 ≤ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) ) |
220 |
14 216 219
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ≤ 0 ) ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
221 |
13 220
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∧ ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
222 |
|
ssrab2 |
⊢ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ⊆ ( 1 ... 𝐽 ) |
223 |
222 21
|
sstri |
⊢ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ⊆ ℝ |
224 |
223
|
a1i |
⊢ ( 𝜑 → { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ⊆ ℝ ) |
225 |
|
fzfi |
⊢ ( 1 ... 𝐽 ) ∈ Fin |
226 |
|
ssfi |
⊢ ( ( ( 1 ... 𝐽 ) ∈ Fin ∧ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ⊆ ( 1 ... 𝐽 ) ) → { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∈ Fin ) |
227 |
225 222 226
|
mp2an |
⊢ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∈ Fin |
228 |
227
|
a1i |
⊢ ( 𝜑 → { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∈ Fin ) |
229 |
|
rabn0 |
⊢ ( { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ≠ ∅ ↔ ∃ 𝑖 ∈ ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 ) |
230 |
8 229
|
sylibr |
⊢ ( 𝜑 → { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ≠ ∅ ) |
231 |
|
fimaxre |
⊢ ( ( { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ⊆ ℝ ∧ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∈ Fin ∧ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ≠ ∅ ) → ∃ 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) |
232 |
224 228 230 231
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∀ 𝑗 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } 𝑗 ≤ 𝑘 ) |
233 |
221 232
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
234 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } → 𝑘 ∈ ( 1 ... 𝐽 ) ) |
235 |
234
|
anim1i |
⊢ ( ( 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) → ( 𝑘 ∈ ( 1 ... 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) ) |
236 |
235
|
reximi2 |
⊢ ( ∃ 𝑘 ∈ { 𝑖 ∈ ( 1 ... 𝐽 ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) ≤ 0 } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 → ∃ 𝑘 ∈ ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
237 |
233 236
|
syl |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |