| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							⊢ 𝑀  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							⊢ 𝑁  ∈  ℕ  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 }  | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotlemfcc.c | 
							⊢ ( 𝜑  →  𝐶  ∈  𝑂 )  | 
						
						
							| 7 | 
							
								
							 | 
							ballotlemfcc.j | 
							⊢ ( 𝜑  →  𝐽  ∈  ℕ )  | 
						
						
							| 8 | 
							
								
							 | 
							ballotlemfcc.3 | 
							⊢ ( 𝜑  →  ∃ 𝑖  ∈  ( 1 ... 𝐽 ) 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ballotlemfcc.4 | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  <  0 )  | 
						
						
							| 10 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  𝑘  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							breq2d | 
							⊢ ( 𝑖  =  𝑘  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							elrab | 
							⊢ ( 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ↔  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							anbi1i | 
							⊢ ( ( 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 )  ↔  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  →  𝑘  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  𝑘  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							fzssuz | 
							⊢ ( 1 ... 𝐽 )  ⊆  ( ℤ≥ ‘ 1 )  | 
						
						
							| 17 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 1 )  ⊆  ℤ  | 
						
						
							| 18 | 
							
								16 17
							 | 
							sstri | 
							⊢ ( 1 ... 𝐽 )  ⊆  ℤ  | 
						
						
							| 19 | 
							
								
							 | 
							zssre | 
							⊢ ℤ  ⊆  ℝ  | 
						
						
							| 20 | 
							
								18 19
							 | 
							sstri | 
							⊢ ( 1 ... 𝐽 )  ⊆  ℝ  | 
						
						
							| 21 | 
							
								20
							 | 
							sseli | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  𝑘  ∈  ℝ )  | 
						
						
							| 22 | 
							
								21
							 | 
							ltp1d | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  𝑘  <  ( 𝑘  +  1 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							1red | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  1  ∈  ℝ )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							readdcld | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( 𝑘  +  1 )  ∈  ℝ )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							ltnled | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( 𝑘  <  ( 𝑘  +  1 )  ↔  ¬  ( 𝑘  +  1 )  ≤  𝑘 ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							mpbid | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ¬  ( 𝑘  +  1 )  ≤  𝑘 )  | 
						
						
							| 27 | 
							
								15 26
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ¬  ( 𝑘  +  1 )  ≤  𝑘 )  | 
						
						
							| 28 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 )  | 
						
						
							| 29 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  =  𝐽 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  <  0 )  | 
						
						
							| 30 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑘  =  𝐽 )  →  𝑘  =  𝐽 )  | 
						
						
							| 31 | 
							
								30
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑘  =  𝐽 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							breq1d | 
							⊢ ( ( 𝜑  ∧  𝑘  =  𝐽 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  <  0  ↔  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  <  0 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							elnnuz | 
							⊢ ( 𝐽  ∈  ℕ  ↔  𝐽  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 34 | 
							
								7 33
							 | 
							sylib | 
							⊢ ( 𝜑  →  𝐽  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eluzfz2 | 
							⊢ ( 𝐽  ∈  ( ℤ≥ ‘ 1 )  →  𝐽  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐽  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑘  =  𝐽  →  ( 𝑘  ∈  ( 1 ... 𝐽 )  ↔  𝐽  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl5ibrcom | 
							⊢ ( 𝜑  →  ( 𝑘  =  𝐽  →  𝑘  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							anc2li | 
							⊢ ( 𝜑  →  ( 𝑘  =  𝐽  →  ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐽 ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							1eluzge0 | 
							⊢ 1  ∈  ( ℤ≥ ‘ 0 )  | 
						
						
							| 41 | 
							
								
							 | 
							fzss1 | 
							⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  ( 1 ... 𝐽 )  ⊆  ( 0 ... 𝐽 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							sseld | 
							⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝑘  ∈  ( 1 ... 𝐽 )  →  𝑘  ∈  ( 0 ... 𝐽 ) ) )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							ax-mp | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  𝑘  ∈  ( 0 ... 𝐽 ) )  | 
						
						
							| 44 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝐶  ∈  𝑂 )  | 
						
						
							| 45 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝑘  ∈  ( 0 ... 𝐽 )  →  𝑘  ∈  ℤ )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  𝑘  ∈  ℤ )  | 
						
						
							| 47 | 
							
								1 2 3 4 5 44 46
							 | 
							ballotlemfelz | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ )  | 
						
						
							| 48 | 
							
								47
							 | 
							zred | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 49 | 
							
								
							 | 
							0red | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  0  ∈  ℝ )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							ltnled | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  <  0  ↔  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  | 
						
						
							| 51 | 
							
								43 50
							 | 
							sylan2 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... 𝐽 ) )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  <  0  ↔  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  | 
						
						
							| 52 | 
							
								39 51
							 | 
							syl6 | 
							⊢ ( 𝜑  →  ( 𝑘  =  𝐽  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  <  0  ↔  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑘  =  𝐽 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  <  0  ↔  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  | 
						
						
							| 54 | 
							
								32 53
							 | 
							bitr3d | 
							⊢ ( ( 𝜑  ∧  𝑘  =  𝐽 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  <  0  ↔  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  | 
						
						
							| 55 | 
							
								29 54
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝑘  =  𝐽 )  →  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑘  =  𝐽  →  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							con2d | 
							⊢ ( 𝜑  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  →  ¬  𝑘  =  𝐽 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							nn1m1nn | 
							⊢ ( 𝐽  ∈  ℕ  →  ( 𝐽  =  1  ∨  ( 𝐽  −  1 )  ∈  ℕ ) )  | 
						
						
							| 59 | 
							
								7 58
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐽  =  1  ∨  ( 𝐽  −  1 )  ∈  ℕ ) )  | 
						
						
							| 60 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ∃ 𝑖  ∈  ( 1 ... 𝐽 ) 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐽  =  1  →  ( 𝐽 ... 𝐽 )  =  ( 1 ... 𝐽 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ( 𝐽 ... 𝐽 )  =  ( 1 ... 𝐽 ) )  | 
						
						
							| 63 | 
							
								7
							 | 
							nnzd | 
							⊢ ( 𝜑  →  𝐽  ∈  ℤ )  | 
						
						
							| 64 | 
							
								
							 | 
							fzsn | 
							⊢ ( 𝐽  ∈  ℤ  →  ( 𝐽 ... 𝐽 )  =  { 𝐽 } )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐽 ... 𝐽 )  =  { 𝐽 } )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ( 𝐽 ... 𝐽 )  =  { 𝐽 } )  | 
						
						
							| 67 | 
							
								62 66
							 | 
							eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ( 1 ... 𝐽 )  =  { 𝐽 } )  | 
						
						
							| 68 | 
							
								60 67
							 | 
							rexeqtrdv | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ∃ 𝑖  ∈  { 𝐽 } 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 69 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  𝐽  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							breq2d | 
							⊢ ( 𝑖  =  𝐽  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							rexsng | 
							⊢ ( 𝐽  ∈  ℕ  →  ( ∃ 𝑖  ∈  { 𝐽 } 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) )  | 
						
						
							| 72 | 
							
								7 71
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  { 𝐽 } 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ( ∃ 𝑖  ∈  { 𝐽 } 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) )  | 
						
						
							| 74 | 
							
								68 73
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) )  | 
						
						
							| 75 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  <  0 )  | 
						
						
							| 76 | 
							
								1 2 3 4 5 6 63
							 | 
							ballotlemfelz | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ℤ )  | 
						
						
							| 77 | 
							
								76
							 | 
							zred | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  ∈  ℝ )  | 
						
						
							| 78 | 
							
								
							 | 
							0red | 
							⊢ ( 𝜑  →  0  ∈  ℝ )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							ltnled | 
							⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  <  0  ↔  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 )  <  0  ↔  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) ) )  | 
						
						
							| 81 | 
							
								75 80
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  𝐽  =  1 )  →  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) )  | 
						
						
							| 82 | 
							
								74 81
							 | 
							pm2.65da | 
							⊢ ( 𝜑  →  ¬  𝐽  =  1 )  | 
						
						
							| 83 | 
							
								
							 | 
							biortn | 
							⊢ ( ¬  𝐽  =  1  →  ( ( 𝐽  −  1 )  ∈  ℕ  ↔  ( ¬  ¬  𝐽  =  1  ∨  ( 𝐽  −  1 )  ∈  ℕ ) ) )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 𝐽  −  1 )  ∈  ℕ  ↔  ( ¬  ¬  𝐽  =  1  ∨  ( 𝐽  −  1 )  ∈  ℕ ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							notnotb | 
							⊢ ( 𝐽  =  1  ↔  ¬  ¬  𝐽  =  1 )  | 
						
						
							| 86 | 
							
								85
							 | 
							orbi1i | 
							⊢ ( ( 𝐽  =  1  ∨  ( 𝐽  −  1 )  ∈  ℕ )  ↔  ( ¬  ¬  𝐽  =  1  ∨  ( 𝐽  −  1 )  ∈  ℕ ) )  | 
						
						
							| 87 | 
							
								84 86
							 | 
							bitr4di | 
							⊢ ( 𝜑  →  ( ( 𝐽  −  1 )  ∈  ℕ  ↔  ( 𝐽  =  1  ∨  ( 𝐽  −  1 )  ∈  ℕ ) ) )  | 
						
						
							| 88 | 
							
								59 87
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 𝐽  −  1 )  ∈  ℕ )  | 
						
						
							| 89 | 
							
								
							 | 
							elnnuz | 
							⊢ ( ( 𝐽  −  1 )  ∈  ℕ  ↔  ( 𝐽  −  1 )  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 90 | 
							
								88 89
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( 𝐽  −  1 )  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 91 | 
							
								
							 | 
							elfzp1 | 
							⊢ ( ( 𝐽  −  1 )  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑘  ∈  ( 1 ... ( ( 𝐽  −  1 )  +  1 ) )  ↔  ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ∨  𝑘  =  ( ( 𝐽  −  1 )  +  1 ) ) ) )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 1 ... ( ( 𝐽  −  1 )  +  1 ) )  ↔  ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ∨  𝑘  =  ( ( 𝐽  −  1 )  +  1 ) ) ) )  | 
						
						
							| 93 | 
							
								7
							 | 
							nncnd | 
							⊢ ( 𝜑  →  𝐽  ∈  ℂ )  | 
						
						
							| 94 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝜑  →  1  ∈  ℂ )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							npcand | 
							⊢ ( 𝜑  →  ( ( 𝐽  −  1 )  +  1 )  =  𝐽 )  | 
						
						
							| 96 | 
							
								95
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 1 ... ( ( 𝐽  −  1 )  +  1 ) )  =  ( 1 ... 𝐽 ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 1 ... ( ( 𝐽  −  1 )  +  1 ) )  ↔  𝑘  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 98 | 
							
								95
							 | 
							eqeq2d | 
							⊢ ( 𝜑  →  ( 𝑘  =  ( ( 𝐽  −  1 )  +  1 )  ↔  𝑘  =  𝐽 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							orbi2d | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ∨  𝑘  =  ( ( 𝐽  −  1 )  +  1 ) )  ↔  ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ∨  𝑘  =  𝐽 ) ) )  | 
						
						
							| 100 | 
							
								92 97 99
							 | 
							3bitr3d | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 1 ... 𝐽 )  ↔  ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ∨  𝑘  =  𝐽 ) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							orcom | 
							⊢ ( ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ∨  𝑘  =  𝐽 )  ↔  ( 𝑘  =  𝐽  ∨  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) ) )  | 
						
						
							| 102 | 
							
								100 101
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 1 ... 𝐽 )  ↔  ( 𝑘  =  𝐽  ∨  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							biimpd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( 𝑘  =  𝐽  ∨  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) ) ) )  | 
						
						
							| 104 | 
							
								
							 | 
							pm5.6 | 
							⊢ ( ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  ¬  𝑘  =  𝐽 )  →  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) )  ↔  ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( 𝑘  =  𝐽  ∨  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) ) ) )  | 
						
						
							| 105 | 
							
								103 104
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  ¬  𝑘  =  𝐽 )  →  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) ) )  | 
						
						
							| 106 | 
							
								88
							 | 
							nnzd | 
							⊢ ( 𝜑  →  ( 𝐽  −  1 )  ∈  ℤ )  | 
						
						
							| 107 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 108 | 
							
								106 107
							 | 
							jctil | 
							⊢ ( 𝜑  →  ( 1  ∈  ℤ  ∧  ( 𝐽  −  1 )  ∈  ℤ ) )  | 
						
						
							| 109 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  →  𝑘  ∈  ℤ )  | 
						
						
							| 110 | 
							
								109 107
							 | 
							jctir | 
							⊢ ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  →  ( 𝑘  ∈  ℤ  ∧  1  ∈  ℤ ) )  | 
						
						
							| 111 | 
							
								
							 | 
							fzaddel | 
							⊢ ( ( ( 1  ∈  ℤ  ∧  ( 𝐽  −  1 )  ∈  ℤ )  ∧  ( 𝑘  ∈  ℤ  ∧  1  ∈  ℤ ) )  →  ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ↔  ( 𝑘  +  1 )  ∈  ( ( 1  +  1 ) ... ( ( 𝐽  −  1 )  +  1 ) ) ) )  | 
						
						
							| 112 | 
							
								108 110 111
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) )  →  ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ↔  ( 𝑘  +  1 )  ∈  ( ( 1  +  1 ) ... ( ( 𝐽  −  1 )  +  1 ) ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							biimp3a | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  ∧  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ( ( 1  +  1 ) ... ( ( 𝐽  −  1 )  +  1 ) ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							3anidm23 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ( ( 1  +  1 ) ... ( ( 𝐽  −  1 )  +  1 ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							1p1e2 | 
							⊢ ( 1  +  1 )  =  2  | 
						
						
							| 116 | 
							
								115
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 1  +  1 )  =  2 )  | 
						
						
							| 117 | 
							
								116 95
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( ( 1  +  1 ) ... ( ( 𝐽  −  1 )  +  1 ) )  =  ( 2 ... 𝐽 ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( ( 𝑘  +  1 )  ∈  ( ( 1  +  1 ) ... ( ( 𝐽  −  1 )  +  1 ) )  ↔  ( 𝑘  +  1 )  ∈  ( 2 ... 𝐽 ) ) )  | 
						
						
							| 119 | 
							
								
							 | 
							2eluzge1 | 
							⊢ 2  ∈  ( ℤ≥ ‘ 1 )  | 
						
						
							| 120 | 
							
								
							 | 
							fzss1 | 
							⊢ ( 2  ∈  ( ℤ≥ ‘ 1 )  →  ( 2 ... 𝐽 )  ⊆  ( 1 ... 𝐽 ) )  | 
						
						
							| 121 | 
							
								119 120
							 | 
							ax-mp | 
							⊢ ( 2 ... 𝐽 )  ⊆  ( 1 ... 𝐽 )  | 
						
						
							| 122 | 
							
								121
							 | 
							sseli | 
							⊢ ( ( 𝑘  +  1 )  ∈  ( 2 ... 𝐽 )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 123 | 
							
								118 122
							 | 
							biimtrdi | 
							⊢ ( 𝜑  →  ( ( 𝑘  +  1 )  ∈  ( ( 1  +  1 ) ... ( ( 𝐽  −  1 )  +  1 ) )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) )  →  ( ( 𝑘  +  1 )  ∈  ( ( 1  +  1 ) ... ( ( 𝐽  −  1 )  +  1 ) )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 125 | 
							
								114 124
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) ) )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ( 1 ... ( 𝐽  −  1 ) )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 127 | 
							
								105 126
							 | 
							syld | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  ¬  𝑘  =  𝐽 )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 128 | 
							
								57 127
							 | 
							sylan2d | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 129 | 
							
								128
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 131 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							breq2d | 
							⊢ ( 𝑖  =  ( 𝑘  +  1 )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ↔  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 133 | 
							
								132
							 | 
							elrab | 
							⊢ ( ( 𝑘  +  1 )  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ↔  ( ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 134 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑗  ≤  𝑘  ↔  ( 𝑘  +  1 )  ≤  𝑘 ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘  ∧  ( 𝑘  +  1 )  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } )  →  ( 𝑘  +  1 )  ≤  𝑘 )  | 
						
						
							| 136 | 
							
								133 135
							 | 
							sylan2br | 
							⊢ ( ( ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘  ∧  ( ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) ) )  →  ( 𝑘  +  1 )  ≤  𝑘 )  | 
						
						
							| 137 | 
							
								136
							 | 
							expr | 
							⊢ ( ( ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  →  ( 𝑘  +  1 )  ≤  𝑘 ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							con3d | 
							⊢ ( ( ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  →  ( ¬  ( 𝑘  +  1 )  ≤  𝑘  →  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 139 | 
							
								28 130 138
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ¬  ( 𝑘  +  1 )  ≤  𝑘  →  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 140 | 
							
								27 139
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) )  | 
						
						
							| 141 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 )  | 
						
						
							| 142 | 
							
								130
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 143 | 
							
								
							 | 
							0red | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  0  ∈  ℝ )  | 
						
						
							| 144 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  𝜑 )  | 
						
						
							| 145 | 
							
								129
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 146 | 
							
								41
							 | 
							sseld | 
							⊢ ( 1  ∈  ( ℤ≥ ‘ 0 )  →  ( ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 )  →  ( 𝑘  +  1 )  ∈  ( 0 ... 𝐽 ) ) )  | 
						
						
							| 147 | 
							
								40 145 146
							 | 
							mpsyl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( 𝑘  +  1 )  ∈  ( 0 ... 𝐽 ) )  | 
						
						
							| 148 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 0 ... 𝐽 ) )  →  𝐶  ∈  𝑂 )  | 
						
						
							| 149 | 
							
								
							 | 
							elfzelz | 
							⊢ ( ( 𝑘  +  1 )  ∈  ( 0 ... 𝐽 )  →  ( 𝑘  +  1 )  ∈  ℤ )  | 
						
						
							| 150 | 
							
								149
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 0 ... 𝐽 ) )  →  ( 𝑘  +  1 )  ∈  ℤ )  | 
						
						
							| 151 | 
							
								1 2 3 4 5 148 150
							 | 
							ballotlemfelz | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  ∈  ℤ )  | 
						
						
							| 152 | 
							
								151
							 | 
							zred | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 0 ... 𝐽 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  ∈  ℝ )  | 
						
						
							| 153 | 
							
								144 147 152
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  ∈  ℝ )  | 
						
						
							| 154 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  | 
						
						
							| 155 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  𝑘  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 156 | 
							
								155 43
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  𝑘  ∈  ( 0 ... 𝐽 ) )  | 
						
						
							| 157 | 
							
								128
							 | 
							imdistani | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  →  ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) ) )  | 
						
						
							| 158 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  →  𝐶  ∈  𝑂 )  | 
						
						
							| 159 | 
							
								
							 | 
							elfznn | 
							⊢ ( ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 )  →  ( 𝑘  +  1 )  ∈  ℕ )  | 
						
						
							| 160 | 
							
								159
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  →  ( 𝑘  +  1 )  ∈  ℕ )  | 
						
						
							| 161 | 
							
								1 2 3 4 5 158 160
							 | 
							ballotlemfp1 | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  →  ( ( ¬  ( 𝑘  +  1 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  −  1 ) )  ∧  ( ( 𝑘  +  1 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  +  1 ) ) ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							simprd | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  →  ( ( 𝑘  +  1 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  +  1 ) ) )  | 
						
						
							| 163 | 
							
								162
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  +  1 ) )  | 
						
						
							| 164 | 
							
								157 163
							 | 
							sylan | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  +  1 ) )  | 
						
						
							| 165 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  𝑘  ∈  ℤ )  | 
						
						
							| 166 | 
							
								165
							 | 
							zcnd | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  𝑘  ∈  ℂ )  | 
						
						
							| 167 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  1  ∈  ℂ )  | 
						
						
							| 168 | 
							
								166 167
							 | 
							pncand | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( ( 𝑘  +  1 )  −  1 )  =  𝑘 )  | 
						
						
							| 169 | 
							
								168
							 | 
							fveq2d | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							oveq1d | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  +  1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) )  | 
						
						
							| 171 | 
							
								170
							 | 
							eqeq2d | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  +  1 )  ↔  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) ) )  | 
						
						
							| 172 | 
							
								155 171
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  +  1 )  ↔  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) ) )  | 
						
						
							| 173 | 
							
								164 172
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) )  | 
						
						
							| 174 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 175 | 
							
								
							 | 
							zleltp1 | 
							⊢ ( ( 0  ∈  ℤ  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ↔  0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) ) )  | 
						
						
							| 176 | 
							
								174 47 175
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ↔  0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) ) )  | 
						
						
							| 177 | 
							
								176
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ↔  0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) ) )  | 
						
						
							| 178 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 )  →  ( 0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  ↔  0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) ) )  | 
						
						
							| 179 | 
							
								178
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) )  →  ( 0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  ↔  0  <  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) ) )  | 
						
						
							| 180 | 
							
								177 179
							 | 
							bitr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝐽 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  +  1 ) )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ↔  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 181 | 
							
								144 156 173 180
							 | 
							syl21anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ↔  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) ) )  | 
						
						
							| 182 | 
							
								154 181
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) )  | 
						
						
							| 183 | 
							
								143 153 182
							 | 
							ltled | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) )  | 
						
						
							| 184 | 
							
								183
							 | 
							adantlrr | 
							⊢ ( ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) ) )  | 
						
						
							| 185 | 
							
								141 142 184 136
							 | 
							syl12anc | 
							⊢ ( ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  ∧  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( 𝑘  +  1 )  ≤  𝑘 )  | 
						
						
							| 186 | 
							
								27 185
							 | 
							mtand | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ¬  ( 𝑘  +  1 )  ∈  𝐶 )  | 
						
						
							| 187 | 
							
								161
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  →  ( ¬  ( 𝑘  +  1 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  −  1 ) ) )  | 
						
						
							| 188 | 
							
								187
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  +  1 )  ∈  ( 1 ... 𝐽 ) )  ∧  ¬  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  −  1 ) )  | 
						
						
							| 189 | 
							
								157 188
							 | 
							sylan | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ¬  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  −  1 ) )  | 
						
						
							| 190 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ¬  ( 𝑘  +  1 )  ∈  𝐶 )  →  𝑘  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 191 | 
							
								169
							 | 
							oveq1d | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  −  1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) )  | 
						
						
							| 192 | 
							
								191
							 | 
							eqeq2d | 
							⊢ ( 𝑘  ∈  ( 1 ... 𝐽 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  −  1 )  ↔  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) ) )  | 
						
						
							| 193 | 
							
								190 192
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ¬  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝑘  +  1 )  −  1 ) )  −  1 )  ↔  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) ) )  | 
						
						
							| 194 | 
							
								189 193
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  ∧  ¬  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) )  | 
						
						
							| 195 | 
							
								194
							 | 
							adantlrr | 
							⊢ ( ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  ∧  ¬  ( 𝑘  +  1 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) )  | 
						
						
							| 196 | 
							
								186 195
							 | 
							mpdan | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) )  | 
						
						
							| 197 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  ↔  0  ≤  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) ) )  | 
						
						
							| 198 | 
							
								197
							 | 
							notbid | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 )  →  ( ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  ↔  ¬  0  ≤  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) ) )  | 
						
						
							| 199 | 
							
								196 198
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ¬  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝑘  +  1 ) )  ↔  ¬  0  ≤  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) ) )  | 
						
						
							| 200 | 
							
								140 199
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ¬  0  ≤  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) )  | 
						
						
							| 201 | 
							
								14 43
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  →  𝑘  ∈  ( 0 ... 𝐽 ) )  | 
						
						
							| 202 | 
							
								201 47
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ )  | 
						
						
							| 203 | 
							
								202
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ )  | 
						
						
							| 204 | 
							
								
							 | 
							zlem1lt | 
							⊢ ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ≤  0  ↔  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 )  <  0 ) )  | 
						
						
							| 205 | 
							
								174 204
							 | 
							mpan2 | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ≤  0  ↔  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 )  <  0 ) )  | 
						
						
							| 206 | 
							
								
							 | 
							zre | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 207 | 
							
								
							 | 
							1red | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ  →  1  ∈  ℝ )  | 
						
						
							| 208 | 
							
								206 207
							 | 
							resubcld | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 )  ∈  ℝ )  | 
						
						
							| 209 | 
							
								
							 | 
							0red | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ  →  0  ∈  ℝ )  | 
						
						
							| 210 | 
							
								208 209
							 | 
							ltnled | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ  →  ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 )  <  0  ↔  ¬  0  ≤  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) ) )  | 
						
						
							| 211 | 
							
								205 210
							 | 
							bitrd | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℤ  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ≤  0  ↔  ¬  0  ≤  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) ) )  | 
						
						
							| 212 | 
							
								203 211
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ≤  0  ↔  ¬  0  ≤  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  −  1 ) ) )  | 
						
						
							| 213 | 
							
								200 212
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ≤  0 )  | 
						
						
							| 214 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  | 
						
						
							| 215 | 
							
								203
							 | 
							zred | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ∈  ℝ )  | 
						
						
							| 216 | 
							
								
							 | 
							0red | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  0  ∈  ℝ )  | 
						
						
							| 217 | 
							
								215 216
							 | 
							letri3d | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0  ↔  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  ≤  0  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) ) ) )  | 
						
						
							| 218 | 
							
								213 214 217
							 | 
							mpbir2and | 
							⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) )  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 219 | 
							
								13 218
							 | 
							sylan2b | 
							⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ∧  ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 ) )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 220 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ⊆  ( 1 ... 𝐽 )  | 
						
						
							| 221 | 
							
								220 20
							 | 
							sstri | 
							⊢ { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ⊆  ℝ  | 
						
						
							| 222 | 
							
								221
							 | 
							a1i | 
							⊢ ( 𝜑  →  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ⊆  ℝ )  | 
						
						
							| 223 | 
							
								
							 | 
							fzfi | 
							⊢ ( 1 ... 𝐽 )  ∈  Fin  | 
						
						
							| 224 | 
							
								
							 | 
							ssfi | 
							⊢ ( ( ( 1 ... 𝐽 )  ∈  Fin  ∧  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ⊆  ( 1 ... 𝐽 ) )  →  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ∈  Fin )  | 
						
						
							| 225 | 
							
								223 220 224
							 | 
							mp2an | 
							⊢ { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ∈  Fin  | 
						
						
							| 226 | 
							
								225
							 | 
							a1i | 
							⊢ ( 𝜑  →  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ∈  Fin )  | 
						
						
							| 227 | 
							
								
							 | 
							rabn0 | 
							⊢ ( { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ≠  ∅  ↔  ∃ 𝑖  ∈  ( 1 ... 𝐽 ) 0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) )  | 
						
						
							| 228 | 
							
								8 227
							 | 
							sylibr | 
							⊢ ( 𝜑  →  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ≠  ∅ )  | 
						
						
							| 229 | 
							
								
							 | 
							fimaxre | 
							⊢ ( ( { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ⊆  ℝ  ∧  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ∈  Fin  ∧  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ≠  ∅ )  →  ∃ 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 )  | 
						
						
							| 230 | 
							
								222 226 228 229
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ∃ 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ∀ 𝑗  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } 𝑗  ≤  𝑘 )  | 
						
						
							| 231 | 
							
								219 230
							 | 
							reximddv | 
							⊢ ( 𝜑  →  ∃ 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 232 | 
							
								
							 | 
							elrabi | 
							⊢ ( 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  →  𝑘  ∈  ( 1 ... 𝐽 ) )  | 
						
						
							| 233 | 
							
								232
							 | 
							anim1i | 
							⊢ ( ( 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) }  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  →  ( 𝑘  ∈  ( 1 ... 𝐽 )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 ) )  | 
						
						
							| 234 | 
							
								233
							 | 
							reximi2 | 
							⊢ ( ∃ 𝑘  ∈  { 𝑖  ∈  ( 1 ... 𝐽 )  ∣  0  ≤  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 ) } ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0  →  ∃ 𝑘  ∈  ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 235 | 
							
								231 234
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑘  ∈  ( 1 ... 𝐽 ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  |