Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
|
ballotlemg |
⊢ ↑ = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) |
12 |
|
eldifi |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝐶 ∈ 𝑂 ) |
13 |
12
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶 ∈ 𝑂 ) |
14 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) → 𝐽 ∈ ℤ ) |
15 |
14
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → 𝐽 ∈ ℤ ) |
16 |
1 2 3 4 5 13 15
|
ballotlemfval |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) = ( ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ 𝐶 ) ) ) ) |
17 |
|
fzfi |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin |
18 |
1 2 3
|
ballotlemelo |
⊢ ( 𝐶 ∈ 𝑂 ↔ ( 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ♯ ‘ 𝐶 ) = 𝑀 ) ) |
19 |
18
|
simplbi |
⊢ ( 𝐶 ∈ 𝑂 → 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
20 |
|
ssfi |
⊢ ( ( ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ∧ 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶 ∈ Fin ) |
21 |
17 19 20
|
sylancr |
⊢ ( 𝐶 ∈ 𝑂 → 𝐶 ∈ Fin ) |
22 |
13 21
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶 ∈ Fin ) |
23 |
|
fzfid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( 1 ... 𝐽 ) ∈ Fin ) |
24 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemgval |
⊢ ( ( 𝐶 ∈ Fin ∧ ( 1 ... 𝐽 ) ∈ Fin ) → ( 𝐶 ↑ ( 1 ... 𝐽 ) ) = ( ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ 𝐶 ) ) ) ) |
25 |
22 23 24
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝐶 ↑ ( 1 ... 𝐽 ) ) = ( ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ 𝐶 ) ) ) ) |
26 |
16 25
|
eqtr4d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ 𝐽 ) = ( 𝐶 ↑ ( 1 ... 𝐽 ) ) ) |