Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
|
ballotlemg |
⊢ ↑ = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) |
12 |
1 2 3 4 5 6 7 8 9
|
ballotlemsf1o |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ◡ ( 𝑆 ‘ 𝐶 ) = ( 𝑆 ‘ 𝐶 ) ) ) |
13 |
12
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
14 |
|
f1of1 |
⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1→ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1→ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1→ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
17 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
18 |
17
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
20 |
|
elfzuz3 |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ) |
22 |
|
elfzuz3 |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) |
24 |
|
uztrn |
⊢ ( ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ∧ ( 𝐼 ‘ 𝐶 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) |
25 |
21 23 24
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) |
26 |
|
fzss2 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝐽 ) → ( 1 ... 𝐽 ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 1 ... 𝐽 ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
28 |
|
ssinss1 |
⊢ ( ( 1 ... 𝐽 ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
30 |
|
f1ores |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1→ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ↾ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) |
31 |
16 29 30
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ↾ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) |
32 |
|
ovex |
⊢ ( 1 ... 𝐽 ) ∈ V |
33 |
32
|
inex1 |
⊢ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ∈ V |
34 |
33
|
f1oen |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) ↾ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) → ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ≈ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) |
35 |
|
hasheni |
⊢ ( ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ≈ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) → ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) = ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) ) |
36 |
31 34 35
|
3syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) = ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) ) |
37 |
27
|
ssdifssd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
38 |
|
f1ores |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1→ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ↾ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) |
39 |
16 37 38
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ↾ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) |
40 |
|
difexg |
⊢ ( ( 1 ... 𝐽 ) ∈ V → ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ∈ V ) |
41 |
32 40
|
ax-mp |
⊢ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ∈ V |
42 |
41
|
f1oen |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) ↾ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) : ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) –1-1-onto→ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) → ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ≈ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) |
43 |
|
hasheni |
⊢ ( ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ≈ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) → ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) = ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) ) |
44 |
39 42 43
|
3syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) = ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) ) |
45 |
36 44
|
oveq12d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) − ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) = ( ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) − ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) ) ) |
46 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemro |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑅 ‘ 𝐶 ) ∈ 𝑂 ) |
47 |
46
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑅 ‘ 𝐶 ) ∈ 𝑂 ) |
48 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → 𝐽 ∈ ℤ ) |
49 |
48
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ℤ ) |
50 |
1 2 3 4 5 47 49
|
ballotlemfval |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) = ( ( ♯ ‘ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) − ( ♯ ‘ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) ) |
51 |
|
fzfi |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin |
52 |
|
eldifi |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝐶 ∈ 𝑂 ) |
53 |
1 2 3
|
ballotlemelo |
⊢ ( 𝐶 ∈ 𝑂 ↔ ( 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ♯ ‘ 𝐶 ) = 𝑀 ) ) |
54 |
53
|
simplbi |
⊢ ( 𝐶 ∈ 𝑂 → 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
55 |
52 54
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
57 |
|
ssfi |
⊢ ( ( ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ∧ 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶 ∈ Fin ) |
58 |
51 56 57
|
sylancr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐶 ∈ Fin ) |
59 |
|
fzfid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∈ Fin ) |
60 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemgval |
⊢ ( ( 𝐶 ∈ Fin ∧ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∈ Fin ) → ( 𝐶 ↑ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) = ( ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∖ 𝐶 ) ) ) ) |
61 |
58 59 60
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐶 ↑ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) = ( ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∖ 𝐶 ) ) ) ) |
62 |
|
dff1o3 |
⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ↔ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ Fun ◡ ( 𝑆 ‘ 𝐶 ) ) ) |
63 |
62
|
simprbi |
⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) → Fun ◡ ( 𝑆 ‘ 𝐶 ) ) |
64 |
|
imain |
⊢ ( Fun ◡ ( 𝑆 ‘ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ∩ ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) ) ) |
65 |
13 63 64
|
3syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ∩ ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ∩ ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) ) ) |
67 |
1 2 3 4 5 6 7 8 9
|
ballotlemsima |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) |
68 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemscr |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) = 𝐶 ) |
69 |
68
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) = 𝐶 ) |
70 |
67 69
|
ineq12d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ∩ ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∩ 𝐶 ) ) |
71 |
66 70
|
eqtrd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∩ 𝐶 ) ) |
72 |
71
|
fveq2d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) = ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∩ 𝐶 ) ) ) |
73 |
|
imadif |
⊢ ( Fun ◡ ( 𝑆 ‘ 𝐶 ) → ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ∖ ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) ) ) |
74 |
13 63 73
|
3syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ∖ ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ∖ ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) ) ) |
76 |
67 69
|
difeq12d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ∖ ( ( 𝑆 ‘ 𝐶 ) “ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∖ 𝐶 ) ) |
77 |
75 76
|
eqtrd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) = ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∖ 𝐶 ) ) |
78 |
77
|
fveq2d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) = ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∖ 𝐶 ) ) ) |
79 |
72 78
|
oveq12d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) − ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) ) = ( ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∩ 𝐶 ) ) − ( ♯ ‘ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∖ 𝐶 ) ) ) ) |
80 |
61 79
|
eqtr4d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐶 ↑ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) = ( ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∩ ( 𝑅 ‘ 𝐶 ) ) ) ) − ( ♯ ‘ ( ( 𝑆 ‘ 𝐶 ) “ ( ( 1 ... 𝐽 ) ∖ ( 𝑅 ‘ 𝐶 ) ) ) ) ) ) |
81 |
45 50 80
|
3eqtr4d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) = ( 𝐶 ↑ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |