Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
|
ballotlemg |
⊢ ↑ = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) |
12 |
1 2 3 4 5 6 7 8 9
|
ballotlemsel1i |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) |
13 |
|
1zzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 1 ∈ ℤ ) |
14 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
16 |
15
|
simpld |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
17 |
16
|
elfzelzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
18 |
|
elfzuz3 |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ) |
19 |
|
fzss2 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) → ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
20 |
16 18 19
|
3syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
21 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) |
22 |
20 21
|
sseldd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
23 |
1 2 3 4 5 6 7 8 9
|
ballotlemsdom |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
24 |
22 23
|
syldan |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
25 |
24
|
elfzelzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ) |
26 |
|
fzsubel |
⊢ ( ( ( 1 ∈ ℤ ∧ ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) ∧ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ↔ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( ( 1 − 1 ) ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) ) |
27 |
13 17 25 13 26
|
syl22anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ↔ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( ( 1 − 1 ) ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) ) |
28 |
12 27
|
mpbid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( ( 1 − 1 ) ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) |
29 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
30 |
29
|
oveq1i |
⊢ ( ( 1 − 1 ) ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) = ( 0 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) |
31 |
28 30
|
eleqtrdi |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 0 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) |
32 |
14
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
33 |
32
|
elfzelzd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
34 |
|
1zzd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 1 ∈ ℤ ) |
35 |
33 34
|
zsubcld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ∈ ℤ ) |
36 |
|
nnaddcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
37 |
1 2 36
|
mp2an |
⊢ ( 𝑀 + 𝑁 ) ∈ ℕ |
38 |
37
|
nnzi |
⊢ ( 𝑀 + 𝑁 ) ∈ ℤ |
39 |
38
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
40 |
|
elfzle2 |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
41 |
32 40
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
42 |
|
zlem1lt |
⊢ ( ( ( 𝐼 ‘ 𝐶 ) ∈ ℤ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ↔ ( ( 𝐼 ‘ 𝐶 ) − 1 ) < ( 𝑀 + 𝑁 ) ) ) |
43 |
33 39 42
|
syl2anc |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ↔ ( ( 𝐼 ‘ 𝐶 ) − 1 ) < ( 𝑀 + 𝑁 ) ) ) |
44 |
35
|
zred |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ∈ ℝ ) |
45 |
39
|
zred |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
46 |
|
ltle |
⊢ ( ( ( ( 𝐼 ‘ 𝐶 ) − 1 ) ∈ ℝ ∧ ( 𝑀 + 𝑁 ) ∈ ℝ ) → ( ( ( 𝐼 ‘ 𝐶 ) − 1 ) < ( 𝑀 + 𝑁 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) ) |
47 |
44 45 46
|
syl2anc |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( ( 𝐼 ‘ 𝐶 ) − 1 ) < ( 𝑀 + 𝑁 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) ) |
48 |
43 47
|
sylbid |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) ) |
49 |
41 48
|
mpd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) |
50 |
|
eluz2 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) − 1 ) ∈ ℤ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ∧ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) ) |
51 |
35 39 49 50
|
syl3anbrc |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) |
52 |
|
fzss2 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) → ( 0 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ⊆ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
53 |
51 52
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 0 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ⊆ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
54 |
53
|
sselda |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 0 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
55 |
31 54
|
syldan |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
56 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemfg |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = ( 𝐶 ↑ ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ) ) |
57 |
55 56
|
syldan |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = ( 𝐶 ↑ ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ) ) |
58 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemfrc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) = ( 𝐶 ↑ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
59 |
57 58
|
oveq12d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) + ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) = ( ( 𝐶 ↑ ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ) + ( 𝐶 ↑ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) ) |
60 |
|
fzsplit3 |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → ( 1 ... ( 𝐼 ‘ 𝐶 ) ) = ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∪ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
61 |
12 60
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 1 ... ( 𝐼 ‘ 𝐶 ) ) = ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∪ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
62 |
61
|
oveq2d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐶 ↑ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) = ( 𝐶 ↑ ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∪ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) ) |
63 |
|
fz1ssfz0 |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ⊆ ( 0 ... ( 𝑀 + 𝑁 ) ) |
64 |
63
|
sseli |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) |
65 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemfg |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝐼 ‘ 𝐶 ) ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = ( 𝐶 ↑ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
66 |
64 65
|
sylan2 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = ( 𝐶 ↑ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
67 |
16 66
|
syldan |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = ( 𝐶 ↑ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
68 |
15
|
simprd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) |
69 |
67 68
|
eqtr3d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐶 ↑ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) = 0 ) |
70 |
|
fzfi |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin |
71 |
|
eldifi |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝐶 ∈ 𝑂 ) |
72 |
1 2 3
|
ballotlemelo |
⊢ ( 𝐶 ∈ 𝑂 ↔ ( 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ♯ ‘ 𝐶 ) = 𝑀 ) ) |
73 |
72
|
simplbi |
⊢ ( 𝐶 ∈ 𝑂 → 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
74 |
71 73
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
75 |
|
ssfi |
⊢ ( ( ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ∧ 𝐶 ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝐶 ∈ Fin ) |
76 |
70 74 75
|
sylancr |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 𝐶 ∈ Fin ) |
77 |
76
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐶 ∈ Fin ) |
78 |
|
fzfid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∈ Fin ) |
79 |
|
fzfid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ∈ Fin ) |
80 |
25
|
zred |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℝ ) |
81 |
|
ltm1 |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℝ → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ) |
82 |
|
fzdisj |
⊢ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) → ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∩ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) = ∅ ) |
83 |
80 81 82
|
3syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∩ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) = ∅ ) |
84 |
1 2 3 4 5 6 7 8 9 10 11 77 78 79 83
|
ballotlemgun |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐶 ↑ ( ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∪ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) = ( ( 𝐶 ↑ ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ) + ( 𝐶 ↑ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) ) |
85 |
62 69 84
|
3eqtr3rd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐶 ↑ ( 1 ... ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ) + ( 𝐶 ↑ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) = 0 ) |
86 |
59 85
|
eqtrd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) + ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) = 0 ) |
87 |
71
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐶 ∈ 𝑂 ) |
88 |
25 13
|
zsubcld |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ℤ ) |
89 |
1 2 3 4 5 87 88
|
ballotlemfelz |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∈ ℤ ) |
90 |
89
|
zcnd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∈ ℂ ) |
91 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemro |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑅 ‘ 𝐶 ) ∈ 𝑂 ) |
92 |
91
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑅 ‘ 𝐶 ) ∈ 𝑂 ) |
93 |
21
|
elfzelzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ℤ ) |
94 |
1 2 3 4 5 92 93
|
ballotlemfelz |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ∈ ℤ ) |
95 |
94
|
zcnd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ∈ ℂ ) |
96 |
|
addeq0 |
⊢ ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ∈ ℂ ∧ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ∈ ℂ ) → ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) + ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) = 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) ) |
97 |
90 95 96
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) + ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) = 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) ) |
98 |
86 97
|
mpbid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) |