Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
|
1zzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 1 ∈ ℤ ) |
12 |
|
nnaddcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
13 |
1 2 12
|
mp2an |
⊢ ( 𝑀 + 𝑁 ) ∈ ℕ |
14 |
13
|
nnzi |
⊢ ( 𝑀 + 𝑁 ) ∈ ℤ |
15 |
14
|
a1i |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
16 |
1 2 3 4 5 6 7 8 9
|
ballotlemsdom |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
17 |
16
|
elfzelzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ) |
18 |
17
|
3adant3 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ) |
19 |
18 11
|
zsubcld |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ℤ ) |
20 |
1 2 3 4 5 6 7 8 9
|
ballotlemsgt1 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 1 < ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ) |
21 |
|
zltlem1 |
⊢ ( ( 1 ∈ ℤ ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ) → ( 1 < ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ↔ 1 ≤ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ) |
22 |
21
|
biimpa |
⊢ ( ( ( 1 ∈ ℤ ∧ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ) ∧ 1 < ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ) → 1 ≤ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) |
23 |
11 18 20 22
|
syl21anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 1 ≤ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) |
24 |
18
|
zred |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℝ ) |
25 |
|
1red |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 1 ∈ ℝ ) |
26 |
24 25
|
resubcld |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ℝ ) |
27 |
|
simp1 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ) |
28 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
29 |
28
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
30 |
|
elfzelz |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
31 |
27 29 30
|
3syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
32 |
31
|
zred |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℝ ) |
33 |
15
|
zred |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
34 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 𝐽 ∈ ℤ ) |
35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 𝐽 ∈ ℤ ) |
36 |
|
elfzle1 |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 1 ≤ 𝐽 ) |
37 |
36
|
3ad2ant2 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 1 ≤ 𝐽 ) |
38 |
35
|
zred |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 𝐽 ∈ ℝ ) |
39 |
|
simp3 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 𝐽 < ( 𝐼 ‘ 𝐶 ) ) |
40 |
38 32 39
|
ltled |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) ) |
41 |
11 31 35 37 40
|
elfzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) |
42 |
1 2 3 4 5 6 7 8 9
|
ballotlemsel1i |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) |
43 |
27 41 42
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) |
44 |
|
elfzle2 |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ≤ ( 𝐼 ‘ 𝐶 ) ) |
45 |
43 44
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ≤ ( 𝐼 ‘ 𝐶 ) ) |
46 |
|
zlem1lt |
⊢ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ∈ ℤ ∧ ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ≤ ( 𝐼 ‘ 𝐶 ) ↔ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( 𝐼 ‘ 𝐶 ) ) ) |
47 |
18 31 46
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ≤ ( 𝐼 ‘ 𝐶 ) ↔ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( 𝐼 ‘ 𝐶 ) ) ) |
48 |
45 47
|
mpbid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( 𝐼 ‘ 𝐶 ) ) |
49 |
26 32 48
|
ltled |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ≤ ( 𝐼 ‘ 𝐶 ) ) |
50 |
|
elfzle2 |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
51 |
27 29 50
|
3syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
52 |
26 32 33 49 51
|
letrd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) |
53 |
11 15 19 23 52
|
elfzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
54 |
|
biid |
⊢ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( 𝐼 ‘ 𝐶 ) ↔ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( 𝐼 ‘ 𝐶 ) ) |
55 |
48 54
|
sylibr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( 𝐼 ‘ 𝐶 ) ) |
56 |
1 2 3 4 5 6 7 8
|
ballotlemi |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) = inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
57 |
56
|
breq2d |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( 𝐼 ‘ 𝐶 ) ↔ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) ) |
58 |
57
|
3ad2ant1 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < ( 𝐼 ‘ 𝐶 ) ↔ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) ) |
59 |
55 58
|
mpbid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
60 |
|
ltso |
⊢ < Or ℝ |
61 |
60
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → < Or ℝ ) |
62 |
1 2 3 4 5 6 7 8
|
ballotlemsup |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) ) |
63 |
61 62
|
inflb |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } → ¬ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) ) |
64 |
63
|
con2d |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) → ¬ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ) ) |
65 |
27 59 64
|
sylc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ¬ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ) |
66 |
|
fveqeq2 |
⊢ ( 𝑘 = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ) ) |
67 |
66
|
elrab |
⊢ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ↔ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ) ) |
68 |
65 67
|
sylnib |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ¬ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ) ) |
69 |
|
imnan |
⊢ ( ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ) ↔ ¬ ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ) ) |
70 |
68 69
|
sylibr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ) ) |
71 |
53 70
|
mpd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ) |
72 |
71
|
neqned |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ≠ 0 ) |
73 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemro |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑅 ‘ 𝐶 ) ∈ 𝑂 ) |
74 |
73
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑅 ‘ 𝐶 ) ∈ 𝑂 ) |
75 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → 𝐽 ∈ ℤ ) |
76 |
75
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ℤ ) |
77 |
1 2 3 4 5 74 76
|
ballotlemfelz |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ∈ ℤ ) |
78 |
77
|
zcnd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ∈ ℂ ) |
79 |
78
|
negeq0d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) = 0 ↔ - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) = 0 ) ) |
80 |
|
eqid |
⊢ ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) |
81 |
1 2 3 4 5 6 7 8 9 10 80
|
ballotlemfrceq |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ) |
82 |
81
|
eqeq1d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ↔ - ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) = 0 ) ) |
83 |
79 82
|
bitr4d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) = 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) = 0 ) ) |
84 |
83
|
necon3bid |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ≠ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ≠ 0 ) ) |
85 |
27 41 84
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ≠ 0 ↔ ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) − 1 ) ) ≠ 0 ) ) |
86 |
72 85
|
mpbird |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝐽 < ( 𝐼 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝐽 ) ≠ 0 ) |