| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
| 2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
| 3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
| 4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
| 5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
| 6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
| 7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
| 8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
| 9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
| 10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
| 11 |
|
ballotlemg |
⊢ ↑ = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) |
| 12 |
|
ballotlemgun.1 |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 13 |
|
ballotlemgun.2 |
⊢ ( 𝜑 → 𝑉 ∈ Fin ) |
| 14 |
|
ballotlemgun.3 |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 15 |
|
ballotlemgun.4 |
⊢ ( 𝜑 → ( 𝑉 ∩ 𝑊 ) = ∅ ) |
| 16 |
|
indir |
⊢ ( ( 𝑉 ∪ 𝑊 ) ∩ 𝑈 ) = ( ( 𝑉 ∩ 𝑈 ) ∪ ( 𝑊 ∩ 𝑈 ) ) |
| 17 |
16
|
fveq2i |
⊢ ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∩ 𝑈 ) ) = ( ♯ ‘ ( ( 𝑉 ∩ 𝑈 ) ∪ ( 𝑊 ∩ 𝑈 ) ) ) |
| 18 |
|
infi |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∩ 𝑈 ) ∈ Fin ) |
| 19 |
13 18
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∩ 𝑈 ) ∈ Fin ) |
| 20 |
|
infi |
⊢ ( 𝑊 ∈ Fin → ( 𝑊 ∩ 𝑈 ) ∈ Fin ) |
| 21 |
14 20
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∩ 𝑈 ) ∈ Fin ) |
| 22 |
15
|
ineq1d |
⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑊 ) ∩ 𝑈 ) = ( ∅ ∩ 𝑈 ) ) |
| 23 |
|
inindir |
⊢ ( ( 𝑉 ∩ 𝑊 ) ∩ 𝑈 ) = ( ( 𝑉 ∩ 𝑈 ) ∩ ( 𝑊 ∩ 𝑈 ) ) |
| 24 |
|
0in |
⊢ ( ∅ ∩ 𝑈 ) = ∅ |
| 25 |
22 23 24
|
3eqtr3g |
⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑈 ) ∩ ( 𝑊 ∩ 𝑈 ) ) = ∅ ) |
| 26 |
|
hashun |
⊢ ( ( ( 𝑉 ∩ 𝑈 ) ∈ Fin ∧ ( 𝑊 ∩ 𝑈 ) ∈ Fin ∧ ( ( 𝑉 ∩ 𝑈 ) ∩ ( 𝑊 ∩ 𝑈 ) ) = ∅ ) → ( ♯ ‘ ( ( 𝑉 ∩ 𝑈 ) ∪ ( 𝑊 ∩ 𝑈 ) ) ) = ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) ) ) |
| 27 |
19 21 25 26
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑉 ∩ 𝑈 ) ∪ ( 𝑊 ∩ 𝑈 ) ) ) = ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) ) ) |
| 28 |
17 27
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∩ 𝑈 ) ) = ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) ) ) |
| 29 |
|
difundir |
⊢ ( ( 𝑉 ∪ 𝑊 ) ∖ 𝑈 ) = ( ( 𝑉 ∖ 𝑈 ) ∪ ( 𝑊 ∖ 𝑈 ) ) |
| 30 |
29
|
fveq2i |
⊢ ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∖ 𝑈 ) ) = ( ♯ ‘ ( ( 𝑉 ∖ 𝑈 ) ∪ ( 𝑊 ∖ 𝑈 ) ) ) |
| 31 |
|
diffi |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∖ 𝑈 ) ∈ Fin ) |
| 32 |
13 31
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∖ 𝑈 ) ∈ Fin ) |
| 33 |
|
diffi |
⊢ ( 𝑊 ∈ Fin → ( 𝑊 ∖ 𝑈 ) ∈ Fin ) |
| 34 |
14 33
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∖ 𝑈 ) ∈ Fin ) |
| 35 |
15
|
difeq1d |
⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑊 ) ∖ 𝑈 ) = ( ∅ ∖ 𝑈 ) ) |
| 36 |
|
difindir |
⊢ ( ( 𝑉 ∩ 𝑊 ) ∖ 𝑈 ) = ( ( 𝑉 ∖ 𝑈 ) ∩ ( 𝑊 ∖ 𝑈 ) ) |
| 37 |
|
0dif |
⊢ ( ∅ ∖ 𝑈 ) = ∅ |
| 38 |
35 36 37
|
3eqtr3g |
⊢ ( 𝜑 → ( ( 𝑉 ∖ 𝑈 ) ∩ ( 𝑊 ∖ 𝑈 ) ) = ∅ ) |
| 39 |
|
hashun |
⊢ ( ( ( 𝑉 ∖ 𝑈 ) ∈ Fin ∧ ( 𝑊 ∖ 𝑈 ) ∈ Fin ∧ ( ( 𝑉 ∖ 𝑈 ) ∩ ( 𝑊 ∖ 𝑈 ) ) = ∅ ) → ( ♯ ‘ ( ( 𝑉 ∖ 𝑈 ) ∪ ( 𝑊 ∖ 𝑈 ) ) ) = ( ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) |
| 40 |
32 34 38 39
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑉 ∖ 𝑈 ) ∪ ( 𝑊 ∖ 𝑈 ) ) ) = ( ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) |
| 41 |
30 40
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∖ 𝑈 ) ) = ( ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) |
| 42 |
28 41
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∩ 𝑈 ) ) − ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∖ 𝑈 ) ) ) = ( ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) ) − ( ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) ) |
| 43 |
|
hashcl |
⊢ ( ( 𝑉 ∩ 𝑈 ) ∈ Fin → ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) ∈ ℕ0 ) |
| 44 |
13 18 43
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) ∈ ℕ0 ) |
| 45 |
44
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) ∈ ℂ ) |
| 46 |
|
hashcl |
⊢ ( ( 𝑊 ∩ 𝑈 ) ∈ Fin → ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) ∈ ℕ0 ) |
| 47 |
14 20 46
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) ∈ ℕ0 ) |
| 48 |
47
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) ∈ ℂ ) |
| 49 |
|
hashcl |
⊢ ( ( 𝑉 ∖ 𝑈 ) ∈ Fin → ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ∈ ℕ0 ) |
| 50 |
13 31 49
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ∈ ℕ0 ) |
| 51 |
50
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ∈ ℂ ) |
| 52 |
|
hashcl |
⊢ ( ( 𝑊 ∖ 𝑈 ) ∈ Fin → ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ∈ ℕ0 ) |
| 53 |
14 33 52
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ∈ ℕ0 ) |
| 54 |
53
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ∈ ℂ ) |
| 55 |
45 48 51 54
|
addsub4d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) ) − ( ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) + ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) = ( ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) + ( ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) ) |
| 56 |
42 55
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∩ 𝑈 ) ) − ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∖ 𝑈 ) ) ) = ( ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) + ( ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) ) |
| 57 |
|
unfi |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑊 ∈ Fin ) → ( 𝑉 ∪ 𝑊 ) ∈ Fin ) |
| 58 |
13 14 57
|
syl2anc |
⊢ ( 𝜑 → ( 𝑉 ∪ 𝑊 ) ∈ Fin ) |
| 59 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemgval |
⊢ ( ( 𝑈 ∈ Fin ∧ ( 𝑉 ∪ 𝑊 ) ∈ Fin ) → ( 𝑈 ↑ ( 𝑉 ∪ 𝑊 ) ) = ( ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∩ 𝑈 ) ) − ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∖ 𝑈 ) ) ) ) |
| 60 |
12 58 59
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ↑ ( 𝑉 ∪ 𝑊 ) ) = ( ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∩ 𝑈 ) ) − ( ♯ ‘ ( ( 𝑉 ∪ 𝑊 ) ∖ 𝑈 ) ) ) ) |
| 61 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemgval |
⊢ ( ( 𝑈 ∈ Fin ∧ 𝑉 ∈ Fin ) → ( 𝑈 ↑ 𝑉 ) = ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) ) |
| 62 |
12 13 61
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ↑ 𝑉 ) = ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) ) |
| 63 |
1 2 3 4 5 6 7 8 9 10 11
|
ballotlemgval |
⊢ ( ( 𝑈 ∈ Fin ∧ 𝑊 ∈ Fin ) → ( 𝑈 ↑ 𝑊 ) = ( ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) |
| 64 |
12 14 63
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ↑ 𝑊 ) = ( ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) |
| 65 |
62 64
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑈 ↑ 𝑉 ) + ( 𝑈 ↑ 𝑊 ) ) = ( ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) + ( ( ♯ ‘ ( 𝑊 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑊 ∖ 𝑈 ) ) ) ) ) |
| 66 |
56 60 65
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑈 ↑ ( 𝑉 ∪ 𝑊 ) ) = ( ( 𝑈 ↑ 𝑉 ) + ( 𝑈 ↑ 𝑊 ) ) ) |