Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
|
ballotlemg |
⊢ ↑ = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) |
12 |
|
ineq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑣 ∩ 𝑢 ) = ( 𝑣 ∩ 𝑈 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑢 = 𝑈 → ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) = ( ♯ ‘ ( 𝑣 ∩ 𝑈 ) ) ) |
14 |
|
difeq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑣 ∖ 𝑢 ) = ( 𝑣 ∖ 𝑈 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑢 = 𝑈 → ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) = ( ♯ ‘ ( 𝑣 ∖ 𝑈 ) ) ) |
16 |
13 15
|
oveq12d |
⊢ ( 𝑢 = 𝑈 → ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) = ( ( ♯ ‘ ( 𝑣 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑈 ) ) ) ) |
17 |
|
ineq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 ∩ 𝑈 ) = ( 𝑉 ∩ 𝑈 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑣 = 𝑉 → ( ♯ ‘ ( 𝑣 ∩ 𝑈 ) ) = ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) ) |
19 |
|
difeq1 |
⊢ ( 𝑣 = 𝑉 → ( 𝑣 ∖ 𝑈 ) = ( 𝑉 ∖ 𝑈 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑣 = 𝑉 → ( ♯ ‘ ( 𝑣 ∖ 𝑈 ) ) = ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) |
21 |
18 20
|
oveq12d |
⊢ ( 𝑣 = 𝑉 → ( ( ♯ ‘ ( 𝑣 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑈 ) ) ) = ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) ) |
22 |
|
ovex |
⊢ ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) ∈ V |
23 |
16 21 11 22
|
ovmpo |
⊢ ( ( 𝑈 ∈ Fin ∧ 𝑉 ∈ Fin ) → ( 𝑈 ↑ 𝑉 ) = ( ( ♯ ‘ ( 𝑉 ∩ 𝑈 ) ) − ( ♯ ‘ ( 𝑉 ∖ 𝑈 ) ) ) ) |