| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							⊢ 𝑀  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							⊢ 𝑁  ∈  ℕ  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 }  | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotth.e | 
							⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) }  | 
						
						
							| 7 | 
							
								
							 | 
							ballotth.mgtn | 
							⊢ 𝑁  <  𝑀  | 
						
						
							| 8 | 
							
								
							 | 
							ballotth.i | 
							⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  𝐶  ∈  𝑂 )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  𝐶  ∈  𝑂 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemiex | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simpld | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elfznn | 
							⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℕ )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℕ )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℕ )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemi1 | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( 𝐼 ‘ 𝐶 )  ≠  1 )  | 
						
						
							| 17 | 
							
								
							 | 
							eluz2b3 | 
							⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( ( 𝐼 ‘ 𝐶 )  ∈  ℕ  ∧  ( 𝐼 ‘ 𝐶 )  ≠  1 ) )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							sylanbrc | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							uz2m1nn | 
							⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℕ )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℕ )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℕ )  | 
						
						
							| 22 | 
							
								
							 | 
							elnnuz | 
							⊢ ( ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℕ  ↔  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							biimpi | 
							⊢ ( ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℕ  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eluzfz1 | 
							⊢ ( ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 25 | 
							
								20 23 24
							 | 
							3syl | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  1  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  1  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							1nn | 
							⊢ 1  ∈  ℕ  | 
						
						
							| 28 | 
							
								27
							 | 
							a1i | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  1  ∈  ℕ )  | 
						
						
							| 29 | 
							
								1 2 3 4 5 9 28
							 | 
							ballotlemfp1 | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( ¬  1  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) )  ∧  ( 1  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  +  1 ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							simpld | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ¬  1  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							imp | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							1m1e0 | 
							⊢ ( 1  −  1 )  =  0  | 
						
						
							| 33 | 
							
								32
							 | 
							fveq2i | 
							⊢ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  | 
						
						
							| 34 | 
							
								33
							 | 
							oveq1i | 
							⊢ ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  −  1 )  | 
						
						
							| 35 | 
							
								34
							 | 
							a1i | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( 1  −  1 ) )  −  1 )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  −  1 ) )  | 
						
						
							| 36 | 
							
								1 2 3 4 5
							 | 
							ballotlemfval0 | 
							⊢ ( 𝐶  ∈  𝑂  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  =  0 )  | 
						
						
							| 37 | 
							
								9 36
							 | 
							syl | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  =  0 )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  =  0 )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveq1d | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 0 )  −  1 )  =  ( 0  −  1 ) )  | 
						
						
							| 40 | 
							
								31 35 39
							 | 
							3eqtrrd | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( 0  −  1 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							0le1 | 
							⊢ 0  ≤  1  | 
						
						
							| 42 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 43 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 44 | 
							
								
							 | 
							suble0 | 
							⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 0  −  1 )  ≤  0  ↔  0  ≤  1 ) )  | 
						
						
							| 45 | 
							
								42 43 44
							 | 
							mp2an | 
							⊢ ( ( 0  −  1 )  ≤  0  ↔  0  ≤  1 )  | 
						
						
							| 46 | 
							
								41 45
							 | 
							mpbir | 
							⊢ ( 0  −  1 )  ≤  0  | 
						
						
							| 47 | 
							
								40 46
							 | 
							eqbrtrrdi | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  ≤  0 )  | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  ≤  0 )  | 
						
						
							| 49 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  1  →  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							breq1d | 
							⊢ ( 𝑖  =  1  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ≤  0  ↔  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  ≤  0 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							rspcev | 
							⊢ ( ( 1  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 1 )  ≤  0 )  →  ∃ 𝑖  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ≤  0 )  | 
						
						
							| 52 | 
							
								26 48 51
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ∃ 𝑖  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑖 )  ≤  0 )  | 
						
						
							| 53 | 
							
								
							 | 
							0lt1 | 
							⊢ 0  <  1  | 
						
						
							| 54 | 
							
								
							 | 
							1p0e1 | 
							⊢ ( 1  +  0 )  =  1  | 
						
						
							| 55 | 
							
								1 2 3 4 5 9 14
							 | 
							ballotlemfp1 | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  −  1 ) )  ∧  ( ( 𝐼 ‘ 𝐶 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  +  1 ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							simpld | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  −  1 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							imp | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  −  1 ) )  | 
						
						
							| 58 | 
							
								11
							 | 
							simprd | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 )  | 
						
						
							| 59 | 
							
								58
							 | 
							adantr | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 )  | 
						
						
							| 60 | 
							
								57 59
							 | 
							eqtr3d | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  −  1 )  =  0 )  | 
						
						
							| 61 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  𝐶  ∈  𝑂 )  | 
						
						
							| 62 | 
							
								14
							 | 
							nnzd | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℤ )  | 
						
						
							| 63 | 
							
								62
							 | 
							adantr | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℤ )  | 
						
						
							| 64 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  1  ∈  ℤ )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							zsubcld | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℤ )  | 
						
						
							| 66 | 
							
								1 2 3 4 5 61 65
							 | 
							ballotlemfelz | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ∈  ℤ )  | 
						
						
							| 67 | 
							
								66
							 | 
							zcnd | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ∈  ℂ )  | 
						
						
							| 68 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  1  ∈  ℂ )  | 
						
						
							| 69 | 
							
								
							 | 
							0cnd | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  0  ∈  ℂ )  | 
						
						
							| 70 | 
							
								67 68 69
							 | 
							subaddd | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( ( ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  −  1 )  =  0  ↔  ( 1  +  0 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ) )  | 
						
						
							| 71 | 
							
								60 70
							 | 
							mpbid | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ( 1  +  0 )  =  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 72 | 
							
								54 71
							 | 
							eqtr3id | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  1  =  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 73 | 
							
								53 72
							 | 
							breqtrid | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							adantlr | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  0  <  ( ( 𝐹 ‘ 𝐶 ) ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 75 | 
							
								1 2 3 4 5 10 21 52 74
							 | 
							ballotlemfc0 | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ∃ 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 76 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemimin | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ¬  ∃ 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 77 | 
							
								76
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  ∧  ¬  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  →  ¬  ∃ 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 78 | 
							
								75 77
							 | 
							condan | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ¬  1  ∈  𝐶 )  →  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 )  |