| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							⊢ 𝑀  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							⊢ 𝑁  ∈  ℕ  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 }  | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotth.e | 
							⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) }  | 
						
						
							| 7 | 
							
								
							 | 
							ballotth.mgtn | 
							⊢ 𝑁  <  𝑀  | 
						
						
							| 8 | 
							
								
							 | 
							ballotth.i | 
							⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) )  | 
						
						
							| 9 | 
							
								
							 | 
							elfzle2 | 
							⊢ ( 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  →  𝑘  ≤  ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  →  𝑘  ≤  ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							elfzelz | 
							⊢ ( 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  →  𝑘  ∈  ℤ )  | 
						
						
							| 12 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemiex | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simpld | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							elfzelzd | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℤ )  | 
						
						
							| 15 | 
							
								
							 | 
							zltlem1 | 
							⊢ ( ( 𝑘  ∈  ℤ  ∧  ( 𝐼 ‘ 𝐶 )  ∈  ℤ )  →  ( 𝑘  <  ( 𝐼 ‘ 𝐶 )  ↔  𝑘  ≤  ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 16 | 
							
								11 14 15
							 | 
							syl2anr | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  →  ( 𝑘  <  ( 𝐼 ‘ 𝐶 )  ↔  𝑘  ≤  ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							mpbird | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  →  𝑘  <  ( 𝐼 ‘ 𝐶 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  →  𝑘  <  ( 𝐼 ‘ 𝐶 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							1zzd | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  1  ∈  ℤ )  | 
						
						
							| 20 | 
							
								14 19
							 | 
							zsubcld | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℤ )  | 
						
						
							| 21 | 
							
								20
							 | 
							zred | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℝ )  | 
						
						
							| 22 | 
							
								
							 | 
							nnaddcl | 
							⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  +  𝑁 )  ∈  ℕ )  | 
						
						
							| 23 | 
							
								1 2 22
							 | 
							mp2an | 
							⊢ ( 𝑀  +  𝑁 )  ∈  ℕ  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑀  +  𝑁 )  ∈  ℕ )  | 
						
						
							| 25 | 
							
								24
							 | 
							nnred | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑀  +  𝑁 )  ∈  ℝ )  | 
						
						
							| 26 | 
							
								
							 | 
							elfzle2 | 
							⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 ) )  | 
						
						
							| 27 | 
							
								13 26
							 | 
							syl | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 ) )  | 
						
						
							| 28 | 
							
								24
							 | 
							nnzd | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑀  +  𝑁 )  ∈  ℤ )  | 
						
						
							| 29 | 
							
								
							 | 
							zlem1lt | 
							⊢ ( ( ( 𝐼 ‘ 𝐶 )  ∈  ℤ  ∧  ( 𝑀  +  𝑁 )  ∈  ℤ )  →  ( ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 )  ↔  ( ( 𝐼 ‘ 𝐶 )  −  1 )  <  ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 30 | 
							
								14 28 29
							 | 
							syl2anc | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  ≤  ( 𝑀  +  𝑁 )  ↔  ( ( 𝐼 ‘ 𝐶 )  −  1 )  <  ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							mpbid | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  <  ( 𝑀  +  𝑁 ) )  | 
						
						
							| 32 | 
							
								21 25 31
							 | 
							ltled | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ≤  ( 𝑀  +  𝑁 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eluz | 
							⊢ ( ( ( ( 𝐼 ‘ 𝐶 )  −  1 )  ∈  ℤ  ∧  ( 𝑀  +  𝑁 )  ∈  ℤ )  →  ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ↔  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ≤  ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 34 | 
							
								20 28 33
							 | 
							syl2anc | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ↔  ( ( 𝐼 ‘ 𝐶 )  −  1 )  ≤  ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							mpbird | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							fzss2 | 
							⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  →  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							syl | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							sseld | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  →  𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							rabid | 
							⊢ ( 𝑘  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ↔  ( 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 ) )  | 
						
						
							| 40 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemsup | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ∃ 𝑧  ∈  ℝ ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							ltso | 
							⊢  <   Or  ℝ  | 
						
						
							| 42 | 
							
								41
							 | 
							a1i | 
							⊢ ( ∃ 𝑧  ∈  ℝ ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) )  →   <   Or  ℝ )  | 
						
						
							| 43 | 
							
								
							 | 
							id | 
							⊢ ( ∃ 𝑧  ∈  ℝ ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) )  →  ∃ 𝑧  ∈  ℝ ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							inflb | 
							⊢ ( ∃ 𝑧  ∈  ℝ ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) )  →  ( 𝑘  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  →  ¬  𝑘  <  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							syl | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑘  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  →  ¬  𝑘  <  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) )  | 
						
						
							| 46 | 
							
								1 2 3 4 5 6 7 8
							 | 
							ballotlemi | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  =  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							breq2d | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑘  <  ( 𝐼 ‘ 𝐶 )  ↔  𝑘  <  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							notbid | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ¬  𝑘  <  ( 𝐼 ‘ 𝐶 )  ↔  ¬  𝑘  <  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) )  | 
						
						
							| 49 | 
							
								45 48
							 | 
							sylibrd | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑘  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  →  ¬  𝑘  <  ( 𝐼 ‘ 𝐶 ) ) )  | 
						
						
							| 50 | 
							
								39 49
							 | 
							biimtrrid | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  →  ¬  𝑘  <  ( 𝐼 ‘ 𝐶 ) ) )  | 
						
						
							| 51 | 
							
								38 50
							 | 
							syland | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  →  ¬  𝑘  <  ( 𝐼 ‘ 𝐶 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							imp | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ( 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 ) )  →  ¬  𝑘  <  ( 𝐼 ‘ 𝐶 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							biid | 
							⊢ ( 𝑘  <  ( 𝐼 ‘ 𝐶 )  ↔  𝑘  <  ( 𝐼 ‘ 𝐶 ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							sylnib | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  ( 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 ) )  →  ¬  𝑘  <  ( 𝐼 ‘ 𝐶 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							anassrs | 
							⊢ ( ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  →  ¬  𝑘  <  ( 𝐼 ‘ 𝐶 ) )  | 
						
						
							| 56 | 
							
								18 55
							 | 
							pm2.65da | 
							⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) )  →  ¬  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 57 | 
							
								56
							 | 
							nrexdv | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ¬  ∃ 𝑘  ∈  ( 1 ... ( ( 𝐼 ‘ 𝐶 )  −  1 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  |