Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) → 𝑘 ≤ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) → 𝑘 ≤ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) |
11 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) → 𝑘 ∈ ℤ ) |
12 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
13 |
12
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
14 |
13
|
elfzelzd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
15 |
|
zltlem1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) → ( 𝑘 < ( 𝐼 ‘ 𝐶 ) ↔ 𝑘 ≤ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) |
16 |
11 14 15
|
syl2anr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) → ( 𝑘 < ( 𝐼 ‘ 𝐶 ) ↔ 𝑘 ≤ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) |
17 |
10 16
|
mpbird |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) → 𝑘 < ( 𝐼 ‘ 𝐶 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) → 𝑘 < ( 𝐼 ‘ 𝐶 ) ) |
19 |
|
1zzd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → 1 ∈ ℤ ) |
20 |
14 19
|
zsubcld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ∈ ℤ ) |
21 |
20
|
zred |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ∈ ℝ ) |
22 |
|
nnaddcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
23 |
1 2 22
|
mp2an |
⊢ ( 𝑀 + 𝑁 ) ∈ ℕ |
24 |
23
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
25 |
24
|
nnred |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
26 |
|
elfzle2 |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
27 |
13 26
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
28 |
24
|
nnzd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
29 |
|
zlem1lt |
⊢ ( ( ( 𝐼 ‘ 𝐶 ) ∈ ℤ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ↔ ( ( 𝐼 ‘ 𝐶 ) − 1 ) < ( 𝑀 + 𝑁 ) ) ) |
30 |
14 28 29
|
syl2anc |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ↔ ( ( 𝐼 ‘ 𝐶 ) − 1 ) < ( 𝑀 + 𝑁 ) ) ) |
31 |
27 30
|
mpbid |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) < ( 𝑀 + 𝑁 ) ) |
32 |
21 25 31
|
ltled |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) |
33 |
|
eluz |
⊢ ( ( ( ( 𝐼 ‘ 𝐶 ) − 1 ) ∈ ℤ ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ↔ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) ) |
34 |
20 28 33
|
syl2anc |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ↔ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ≤ ( 𝑀 + 𝑁 ) ) ) |
35 |
32 34
|
mpbird |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) |
36 |
|
fzss2 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) → ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
37 |
35 36
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
38 |
37
|
sseld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) → 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) |
39 |
|
rabid |
⊢ ( 𝑘 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ↔ ( 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) ) |
40 |
1 2 3 4 5 6 7 8
|
ballotlemsup |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) ) |
41 |
|
ltso |
⊢ < Or ℝ |
42 |
41
|
a1i |
⊢ ( ∃ 𝑧 ∈ ℝ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) → < Or ℝ ) |
43 |
|
id |
⊢ ( ∃ 𝑧 ∈ ℝ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) ) |
44 |
42 43
|
inflb |
⊢ ( ∃ 𝑧 ∈ ℝ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) → ( 𝑘 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } → ¬ 𝑘 < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) ) |
45 |
40 44
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑘 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } → ¬ 𝑘 < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) ) |
46 |
1 2 3 4 5 6 7 8
|
ballotlemi |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) = inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
47 |
46
|
breq2d |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑘 < ( 𝐼 ‘ 𝐶 ) ↔ 𝑘 < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) ) |
48 |
47
|
notbid |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ¬ 𝑘 < ( 𝐼 ‘ 𝐶 ) ↔ ¬ 𝑘 < inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) ) |
49 |
45 48
|
sylibrd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑘 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } → ¬ 𝑘 < ( 𝐼 ‘ 𝐶 ) ) ) |
50 |
39 49
|
syl5bir |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) → ¬ 𝑘 < ( 𝐼 ‘ 𝐶 ) ) ) |
51 |
38 50
|
syland |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) → ¬ 𝑘 < ( 𝐼 ‘ 𝐶 ) ) ) |
52 |
51
|
imp |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) ) → ¬ 𝑘 < ( 𝐼 ‘ 𝐶 ) ) |
53 |
|
biid |
⊢ ( 𝑘 < ( 𝐼 ‘ 𝐶 ) ↔ 𝑘 < ( 𝐼 ‘ 𝐶 ) ) |
54 |
52 53
|
sylnib |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ( 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) ) → ¬ 𝑘 < ( 𝐼 ‘ 𝐶 ) ) |
55 |
54
|
anassrs |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) → ¬ 𝑘 < ( 𝐼 ‘ 𝐶 ) ) |
56 |
18 55
|
pm2.65da |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ) → ¬ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
57 |
56
|
nrexdv |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ¬ ∃ 𝑘 ∈ ( 1 ... ( ( 𝐼 ‘ 𝐶 ) − 1 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |