Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemrc |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑅 ‘ 𝐶 ) ∈ ( 𝑂 ∖ 𝐸 ) ) |
12 |
1 2 3 4 5 6 7 8
|
ballotlemi |
⊢ ( ( 𝑅 ‘ 𝐶 ) ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐶 ) ) = inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐶 ) ) = inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
14 |
|
ltso |
⊢ < Or ℝ |
15 |
14
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → < Or ℝ ) |
16 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
17 |
16
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
18 |
17
|
elfzelzd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
19 |
18
|
zred |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ℝ ) |
20 |
|
eqid |
⊢ ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣 ∩ 𝑢 ) ) − ( ♯ ‘ ( 𝑣 ∖ 𝑢 ) ) ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 20
|
ballotlemfrci |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) |
22 |
|
fveqeq2 |
⊢ ( 𝑘 = ( 𝐼 ‘ 𝐶 ) → ( ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 ↔ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
23 |
22
|
elrab |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ↔ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
24 |
17 21 23
|
sylanbrc |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ) |
25 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } → 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
26 |
25
|
anim2i |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ) → ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ) |
27 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) → 𝑦 < ( 𝐼 ‘ 𝐶 ) ) |
28 |
1 2 3 4 5 6 7 8 9 10
|
ballotlemfrcn0 |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑦 ) ≠ 0 ) |
29 |
28
|
neneqd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) → ¬ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑦 ) = 0 ) |
30 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 ↔ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑦 ) = 0 ) ) |
31 |
30
|
elrab |
⊢ ( 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ↔ ( 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑦 ) = 0 ) ) |
32 |
31
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } → ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑦 ) = 0 ) |
33 |
29 32
|
nsyl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) → ¬ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ) |
34 |
33
|
3expa |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) → ¬ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ) |
35 |
27 34
|
syldan |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) → ¬ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ) |
36 |
35
|
ex |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝑦 < ( 𝐼 ‘ 𝐶 ) → ¬ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ) ) |
37 |
36
|
con2d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } → ¬ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) ) |
38 |
37
|
imp |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ) → ¬ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) |
39 |
26 38
|
sylancom |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } ) → ¬ 𝑦 < ( 𝐼 ‘ 𝐶 ) ) |
40 |
15 19 24 39
|
infmin |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅 ‘ 𝐶 ) ) ‘ 𝑘 ) = 0 } , ℝ , < ) = ( 𝐼 ‘ 𝐶 ) ) |
41 |
13 40
|
eqtrd |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐶 ) ) = ( 𝐼 ‘ 𝐶 ) ) |