Metamath Proof Explorer


Theorem ballotlemoex

Description: O is a set. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
Assertion ballotlemoex 𝑂 ∈ V

Proof

Step Hyp Ref Expression
1 ballotth.m 𝑀 ∈ ℕ
2 ballotth.n 𝑁 ∈ ℕ
3 ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
4 ovex ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ V
5 4 pwex 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ V
6 3 5 rabex2 𝑂 ∈ V