| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							⊢ 𝑀  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							⊢ 𝑁  ∈  ℕ  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 }  | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotth.e | 
							⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) }  | 
						
						
							| 7 | 
							
								
							 | 
							ballotth.mgtn | 
							⊢ 𝑁  <  𝑀  | 
						
						
							| 8 | 
							
								
							 | 
							ballotth.i | 
							⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ballotth.s | 
							⊢ 𝑆  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ballotth.r | 
							⊢ 𝑅  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( ( 𝑆 ‘ 𝑐 )  “  𝑐 ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							ballotlemrval | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑅 ‘ 𝐶 )  =  ( ( 𝑆 ‘ 𝐶 )  “  𝐶 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							imaeq2d | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) )  =  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 𝑆 ‘ 𝐶 )  “  𝐶 ) ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							ballotlemsf1o | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ◡ ( 𝑆 ‘ 𝐶 )  =  ( 𝑆 ‘ 𝐶 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							simprd | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ◡ ( 𝑆 ‘ 𝐶 )  =  ( 𝑆 ‘ 𝐶 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							imaeq1d | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ◡ ( 𝑆 ‘ 𝐶 )  “  ( ( 𝑆 ‘ 𝐶 )  “  𝐶 ) )  =  ( ( 𝑆 ‘ 𝐶 )  “  ( ( 𝑆 ‘ 𝐶 )  “  𝐶 ) ) )  | 
						
						
							| 16 | 
							
								13
							 | 
							simpld | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							f1of1 | 
							⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀  +  𝑁 ) )  →  ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1→ ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1→ ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  𝐶  ∈  𝑂 )  | 
						
						
							| 20 | 
							
								1 2 3
							 | 
							ballotlemelo | 
							⊢ ( 𝐶  ∈  𝑂  ↔  ( 𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ♯ ‘ 𝐶 )  =  𝑀 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							simplbi | 
							⊢ ( 𝐶  ∈  𝑂  →  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							syl | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							f1imacnv | 
							⊢ ( ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀  +  𝑁 ) ) –1-1→ ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  𝐶  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ◡ ( 𝑆 ‘ 𝐶 )  “  ( ( 𝑆 ‘ 𝐶 )  “  𝐶 ) )  =  𝐶 )  | 
						
						
							| 24 | 
							
								18 22 23
							 | 
							syl2anc | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ◡ ( 𝑆 ‘ 𝐶 )  “  ( ( 𝑆 ‘ 𝐶 )  “  𝐶 ) )  =  𝐶 )  | 
						
						
							| 25 | 
							
								12 15 24
							 | 
							3eqtr2d | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝑆 ‘ 𝐶 )  “  ( 𝑅 ‘ 𝐶 ) )  =  𝐶 )  |