Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
imassrn |
⊢ ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ⊆ ran ( 𝑆 ‘ 𝐶 ) |
11 |
1 2 3 4 5 6 7 8 9
|
ballotlemsf1o |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ◡ ( 𝑆 ‘ 𝐶 ) = ( 𝑆 ‘ 𝐶 ) ) ) |
12 |
11
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
13 |
|
f1of |
⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) ⟶ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
14 |
|
frn |
⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) ⟶ ( 1 ... ( 𝑀 + 𝑁 ) ) → ran ( 𝑆 ‘ 𝐶 ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
15 |
12 13 14
|
3syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ran ( 𝑆 ‘ 𝐶 ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
16 |
10 15
|
sstrid |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
17 |
|
fzssuz |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ⊆ ( ℤ≥ ‘ 1 ) |
18 |
|
uzssz |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℤ |
19 |
17 18
|
sstri |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ⊆ ℤ |
20 |
16 19
|
sstrdi |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ⊆ ℤ ) |
21 |
20
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ⊆ ℤ ) |
22 |
21
|
sselda |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ) → 𝑘 ∈ ℤ ) |
23 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) → 𝑘 ∈ ℤ ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝑘 ∈ ℤ ) |
25 |
|
f1ofn |
⊢ ( ( 𝑆 ‘ 𝐶 ) : ( 1 ... ( 𝑀 + 𝑁 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝑆 ‘ 𝐶 ) Fn ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
26 |
12 25
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝑆 ‘ 𝐶 ) Fn ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑆 ‘ 𝐶 ) Fn ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
28 |
1 2 3 4 5 6 7 8
|
ballotlemiex |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) ) = 0 ) ) |
29 |
28
|
simpld |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
31 |
|
elfzuz3 |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ) |
33 |
|
elfzuz3 |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) |
35 |
|
uztrn |
⊢ ( ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝐼 ‘ 𝐶 ) ) ∧ ( 𝐼 ‘ 𝐶 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) |
36 |
32 34 35
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝐽 ) ) |
37 |
|
fzss2 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ 𝐽 ) → ( 1 ... 𝐽 ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 1 ... 𝐽 ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
39 |
|
fvelimab |
⊢ ( ( ( 𝑆 ‘ 𝐶 ) Fn ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( 1 ... 𝐽 ) ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝑘 ∈ ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ↔ ∃ 𝑗 ∈ ( 1 ... 𝐽 ) ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = 𝑘 ) ) |
40 |
27 38 39
|
syl2anc |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑘 ∈ ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ↔ ∃ 𝑗 ∈ ( 1 ... 𝐽 ) ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = 𝑘 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ↔ ∃ 𝑗 ∈ ( 1 ... 𝐽 ) ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = 𝑘 ) ) |
42 |
|
1zzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 1 ∈ ℤ ) |
43 |
1
|
nnzi |
⊢ 𝑀 ∈ ℤ |
44 |
2
|
nnzi |
⊢ 𝑁 ∈ ℤ |
45 |
|
zaddcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
46 |
43 44 45
|
mp2an |
⊢ ( 𝑀 + 𝑁 ) ∈ ℤ |
47 |
46
|
a1i |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
48 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → 𝐽 ∈ ℤ ) |
49 |
48
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ℤ ) |
50 |
|
elfzle1 |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → 1 ≤ 𝐽 ) |
51 |
50
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 1 ≤ 𝐽 ) |
52 |
49
|
zred |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ℝ ) |
53 |
|
elfzelz |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
54 |
29 53
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
55 |
54
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
56 |
55
|
zred |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℝ ) |
57 |
47
|
zred |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
58 |
|
elfzle2 |
⊢ ( 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) → 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) ) |
60 |
|
elfzle2 |
⊢ ( ( 𝐼 ‘ 𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
61 |
29 60
|
syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝐼 ‘ 𝐶 ) ≤ ( 𝑀 + 𝑁 ) ) |
63 |
52 56 57 59 62
|
letrd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ≤ ( 𝑀 + 𝑁 ) ) |
64 |
42 47 49 51 63
|
elfzd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
65 |
1 2 3 4 5 6 7 8 9
|
ballotlemsv |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) = if ( 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) , 𝐽 ) ) |
66 |
64 65
|
syldan |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) = if ( 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) , 𝐽 ) ) |
67 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) |
68 |
|
iftrue |
⊢ ( 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) → if ( 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) , 𝐽 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ) |
69 |
67 58 68
|
3syl |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → if ( 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) , 𝐽 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ) |
70 |
66 69
|
eqtrd |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ) |
71 |
70
|
oveq1d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) = ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) |
72 |
71
|
eleq2d |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( 𝑘 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ↔ 𝑘 ∈ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ↔ 𝑘 ∈ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
74 |
54
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
75 |
74
|
zcnd |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝐼 ‘ 𝐶 ) ∈ ℂ ) |
76 |
|
1cnd |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → 1 ∈ ℂ ) |
77 |
75 76
|
pncand |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) = ( 𝐼 ‘ 𝐶 ) ) |
78 |
77
|
oveq2d |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) ) = ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) |
79 |
78
|
eleq2d |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) ) ↔ 𝑘 ∈ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
80 |
|
1zzd |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → 1 ∈ ℤ ) |
81 |
48
|
ad2antlr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → 𝐽 ∈ ℤ ) |
82 |
74
|
peano2zd |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝐼 ‘ 𝐶 ) + 1 ) ∈ ℤ ) |
83 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℤ ) |
84 |
|
fzrev |
⊢ ( ( ( 1 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ∧ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑘 ∈ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ∈ ( 1 ... 𝐽 ) ) ) |
85 |
80 81 82 83 84
|
syl22anc |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝐽 ) ... ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 1 ) ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ∈ ( 1 ... 𝐽 ) ) ) |
86 |
73 79 85
|
3bitr2d |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ∈ ( 1 ... 𝐽 ) ) ) |
87 |
|
risset |
⊢ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ∈ ( 1 ... 𝐽 ) ↔ ∃ 𝑗 ∈ ( 1 ... 𝐽 ) 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ) |
88 |
87
|
a1i |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ∈ ( 1 ... 𝐽 ) ↔ ∃ 𝑗 ∈ ( 1 ... 𝐽 ) 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ) ) |
89 |
|
eqcom |
⊢ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) = 𝑗 ↔ 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ) |
90 |
54
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
91 |
90
|
adantlr |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℤ ) |
92 |
91
|
zcnd |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℂ ) |
93 |
|
1cnd |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 1 ∈ ℂ ) |
94 |
92 93
|
addcld |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( ( 𝐼 ‘ 𝐶 ) + 1 ) ∈ ℂ ) |
95 |
|
simplr |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑘 ∈ ℤ ) |
96 |
95
|
zcnd |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑘 ∈ ℂ ) |
97 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... 𝐽 ) → 𝑗 ∈ ℤ ) |
98 |
97
|
adantl |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑗 ∈ ℤ ) |
99 |
98
|
zcnd |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑗 ∈ ℂ ) |
100 |
|
subsub23 |
⊢ ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) = 𝑗 ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) = 𝑘 ) ) |
101 |
94 96 99 100
|
syl3anc |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) = 𝑗 ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) = 𝑘 ) ) |
102 |
89 101
|
bitr3id |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) = 𝑘 ) ) |
103 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ) |
104 |
38
|
sselda |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) |
105 |
1 2 3 4 5 6 7 8 9
|
ballotlemsv |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) |
106 |
103 104 105
|
syl2anc |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) ) |
107 |
97
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑗 ∈ ℤ ) |
108 |
107
|
zred |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑗 ∈ ℝ ) |
109 |
48
|
ad2antlr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝐽 ∈ ℤ ) |
110 |
109
|
zred |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝐽 ∈ ℝ ) |
111 |
90
|
zred |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( 𝐼 ‘ 𝐶 ) ∈ ℝ ) |
112 |
|
elfzle2 |
⊢ ( 𝑗 ∈ ( 1 ... 𝐽 ) → 𝑗 ≤ 𝐽 ) |
113 |
112
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑗 ≤ 𝐽 ) |
114 |
58
|
ad2antlr |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝐽 ≤ ( 𝐼 ‘ 𝐶 ) ) |
115 |
108 110 111 113 114
|
letrd |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) ) |
116 |
|
iftrue |
⊢ ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) → if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ) |
117 |
115 116
|
syl |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → if ( 𝑗 ≤ ( 𝐼 ‘ 𝐶 ) , ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) , 𝑗 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ) |
118 |
106 117
|
eqtrd |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) ) |
119 |
118
|
eqeq1d |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = 𝑘 ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) = 𝑘 ) ) |
120 |
119
|
adantlr |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = 𝑘 ↔ ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑗 ) = 𝑘 ) ) |
121 |
102 120
|
bitr4d |
⊢ ( ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑗 ∈ ( 1 ... 𝐽 ) ) → ( 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ↔ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = 𝑘 ) ) |
122 |
121
|
rexbidva |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( ∃ 𝑗 ∈ ( 1 ... 𝐽 ) 𝑗 = ( ( ( 𝐼 ‘ 𝐶 ) + 1 ) − 𝑘 ) ↔ ∃ 𝑗 ∈ ( 1 ... 𝐽 ) ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = 𝑘 ) ) |
123 |
86 88 122
|
3bitrd |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ↔ ∃ 𝑗 ∈ ( 1 ... 𝐽 ) ( ( 𝑆 ‘ 𝐶 ) ‘ 𝑗 ) = 𝑘 ) ) |
124 |
41 123
|
bitr4d |
⊢ ( ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) ↔ 𝑘 ∈ ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) ) |
125 |
22 24 124
|
eqrdav |
⊢ ( ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) ∧ 𝐽 ∈ ( 1 ... ( 𝐼 ‘ 𝐶 ) ) ) → ( ( 𝑆 ‘ 𝐶 ) “ ( 1 ... 𝐽 ) ) = ( ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐽 ) ... ( 𝐼 ‘ 𝐶 ) ) ) |