| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ballotth.m | 
							⊢ 𝑀  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							ballotth.n | 
							⊢ 𝑁  ∈  ℕ  | 
						
						
							| 3 | 
							
								
							 | 
							ballotth.o | 
							⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 }  | 
						
						
							| 4 | 
							
								
							 | 
							ballotth.p | 
							⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ballotth.f | 
							⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ballotth.e | 
							⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) }  | 
						
						
							| 7 | 
							
								
							 | 
							ballotth.mgtn | 
							⊢ 𝑁  <  𝑀  | 
						
						
							| 8 | 
							
								
							 | 
							ballotth.i | 
							⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fzfi | 
							⊢ ( 1 ... ( 𝑀  +  𝑁 ) )  ∈  Fin  | 
						
						
							| 10 | 
							
								
							 | 
							ssrab2 | 
							⊢ { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ssfi | 
							⊢ ( ( ( 1 ... ( 𝑀  +  𝑁 ) )  ∈  Fin  ∧  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ⊆  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ∈  Fin )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							mp2an | 
							⊢ { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ∈  Fin  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ∈  Fin )  | 
						
						
							| 14 | 
							
								1 2 3 4 5 6 7
							 | 
							ballotlem5 | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ∃ 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 15 | 
							
								
							 | 
							rabn0 | 
							⊢ ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ≠  ∅  ↔  ∃ 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylibr | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ≠  ∅ )  | 
						
						
							| 17 | 
							
								
							 | 
							fz1ssnn | 
							⊢ ( 1 ... ( 𝑀  +  𝑁 ) )  ⊆  ℕ  | 
						
						
							| 18 | 
							
								
							 | 
							nnssre | 
							⊢ ℕ  ⊆  ℝ  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sstri | 
							⊢ ( 1 ... ( 𝑀  +  𝑁 ) )  ⊆  ℝ  | 
						
						
							| 20 | 
							
								10 19
							 | 
							sstri | 
							⊢ { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ⊆  ℝ  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ⊆  ℝ )  | 
						
						
							| 22 | 
							
								13 16 21
							 | 
							3jca | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ∈  Fin  ∧  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ≠  ∅  ∧  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ⊆  ℝ ) )  | 
						
						
							| 23 | 
							
								
							 | 
							ltso | 
							⊢  <   Or  ℝ  | 
						
						
							| 24 | 
							
								22 23
							 | 
							jctil | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  (  <   Or  ℝ  ∧  ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ∈  Fin  ∧  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ≠  ∅  ∧  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ⊆  ℝ ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							fiinf2g | 
							⊢ ( (  <   Or  ℝ  ∧  ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ∈  Fin  ∧  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ≠  ∅  ∧  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ⊆  ℝ ) )  →  ∃ 𝑧  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) ) )  | 
						
						
							| 26 | 
							
								20
							 | 
							sseli | 
							⊢ ( 𝑧  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  →  𝑧  ∈  ℝ )  | 
						
						
							| 27 | 
							
								26
							 | 
							anim1i | 
							⊢ ( ( 𝑧  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 }  ∧  ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) ) )  →  ( 𝑧  ∈  ℝ  ∧  ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							reximi2 | 
							⊢ ( ∃ 𝑧  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) )  →  ∃ 𝑧  ∈  ℝ ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) ) )  | 
						
						
							| 29 | 
							
								24 25 28
							 | 
							3syl | 
							⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ∃ 𝑧  ∈  ℝ ( ∀ 𝑤  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } ¬  𝑤  <  𝑧  ∧  ∀ 𝑤  ∈  ℝ ( 𝑧  <  𝑤  →  ∃ 𝑦  ∈  { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 )  =  0 } 𝑦  <  𝑤 ) ) )  |