| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m | ⊢ 𝑀  ∈  ℕ | 
						
							| 2 |  | ballotth.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | ballotth.o | ⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 } | 
						
							| 4 |  | ballotth.p | ⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) ) | 
						
							| 5 |  | ballotth.f | ⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) ) | 
						
							| 6 |  | ballotth.e | ⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } | 
						
							| 7 |  | ballotth.mgtn | ⊢ 𝑁  <  𝑀 | 
						
							| 8 |  | ballotth.i | ⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) | 
						
							| 9 |  | ballotth.s | ⊢ 𝑆  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑑  =  𝐶  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  𝑑  =  𝐶 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( 𝑑  =  𝐶  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( 𝐼 ‘ 𝑑 )  =  ( 𝐼 ‘ 𝐶 ) ) | 
						
							| 12 | 11 | breq2d | ⊢ ( ( 𝑑  =  𝐶  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( 𝑖  ≤  ( 𝐼 ‘ 𝑑 )  ↔  𝑖  ≤  ( 𝐼 ‘ 𝐶 ) ) ) | 
						
							| 13 | 11 | oveq1d | ⊢ ( ( 𝑑  =  𝐶  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝐼 ‘ 𝑑 )  +  1 )  =  ( ( 𝐼 ‘ 𝐶 )  +  1 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝑑  =  𝐶  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( ( 𝐼 ‘ 𝑑 )  +  1 )  −  𝑖 )  =  ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  𝑖 ) ) | 
						
							| 15 | 12 14 | ifbieq1d | ⊢ ( ( 𝑑  =  𝐶  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑑 ) ,  ( ( ( 𝐼 ‘ 𝑑 )  +  1 )  −  𝑖 ) ,  𝑖 )  =  if ( 𝑖  ≤  ( 𝐼 ‘ 𝐶 ) ,  ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) | 
						
							| 16 | 15 | mpteq2dva | ⊢ ( 𝑑  =  𝐶  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑑 ) ,  ( ( ( 𝐼 ‘ 𝑑 )  +  1 )  −  𝑖 ) ,  𝑖 ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝐶 ) ,  ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝑐  =  𝑑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  𝑐  =  𝑑 ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝑐  =  𝑑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( 𝐼 ‘ 𝑐 )  =  ( 𝐼 ‘ 𝑑 ) ) | 
						
							| 19 | 18 | breq2d | ⊢ ( ( 𝑐  =  𝑑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 )  ↔  𝑖  ≤  ( 𝐼 ‘ 𝑑 ) ) ) | 
						
							| 20 | 18 | oveq1d | ⊢ ( ( 𝑐  =  𝑑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝐼 ‘ 𝑐 )  +  1 )  =  ( ( 𝐼 ‘ 𝑑 )  +  1 ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( 𝑐  =  𝑑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 )  =  ( ( ( 𝐼 ‘ 𝑑 )  +  1 )  −  𝑖 ) ) | 
						
							| 22 | 19 21 | ifbieq1d | ⊢ ( ( 𝑐  =  𝑑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) )  →  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 )  =  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑑 ) ,  ( ( ( 𝐼 ‘ 𝑑 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) | 
						
							| 23 | 22 | mpteq2dva | ⊢ ( 𝑐  =  𝑑  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 ) )  =  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑑 ) ,  ( ( ( 𝐼 ‘ 𝑑 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 24 | 23 | cbvmptv | ⊢ ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) )  =  ( 𝑑  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑑 ) ,  ( ( ( 𝐼 ‘ 𝑑 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 25 | 9 24 | eqtri | ⊢ 𝑆  =  ( 𝑑  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑑 ) ,  ( ( ( 𝐼 ‘ 𝑑 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 26 |  | ovex | ⊢ ( 1 ... ( 𝑀  +  𝑁 ) )  ∈  V | 
						
							| 27 | 26 | mptex | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝐶 ) ,  ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  𝑖 ) ,  𝑖 ) )  ∈  V | 
						
							| 28 | 16 25 27 | fvmpt | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝑆 ‘ 𝐶 )  =  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝐶 ) ,  ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) |