Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
ballotth.s |
⊢ 𝑆 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼 ‘ 𝑐 ) , ( ( ( 𝐼 ‘ 𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) ) |
10 |
|
ballotth.r |
⊢ 𝑅 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ ( ( 𝑆 ‘ 𝑐 ) “ 𝑐 ) ) |
11 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } ⊆ 𝑂 |
12 |
6 11
|
eqsstri |
⊢ 𝐸 ⊆ 𝑂 |
13 |
|
fzfi |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin |
14 |
|
pwfi |
⊢ ( ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ↔ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ) |
15 |
13 14
|
mpbi |
⊢ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin |
16 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } ⊆ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) |
17 |
3 16
|
eqsstri |
⊢ 𝑂 ⊆ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) |
18 |
|
ssfi |
⊢ ( ( 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ∧ 𝑂 ⊆ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝑂 ∈ Fin ) |
19 |
15 17 18
|
mp2an |
⊢ 𝑂 ∈ Fin |
20 |
|
ssfi |
⊢ ( ( 𝑂 ∈ Fin ∧ 𝐸 ⊆ 𝑂 ) → 𝐸 ∈ Fin ) |
21 |
19 12 20
|
mp2an |
⊢ 𝐸 ∈ Fin |
22 |
21
|
elexi |
⊢ 𝐸 ∈ V |
23 |
22
|
elpw |
⊢ ( 𝐸 ∈ 𝒫 𝑂 ↔ 𝐸 ⊆ 𝑂 ) |
24 |
|
fveq2 |
⊢ ( 𝑥 = 𝐸 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐸 ) ) |
25 |
24
|
oveq1d |
⊢ ( 𝑥 = 𝐸 → ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) = ( ( ♯ ‘ 𝐸 ) / ( ♯ ‘ 𝑂 ) ) ) |
26 |
|
ovex |
⊢ ( ( ♯ ‘ 𝐸 ) / ( ♯ ‘ 𝑂 ) ) ∈ V |
27 |
25 4 26
|
fvmpt |
⊢ ( 𝐸 ∈ 𝒫 𝑂 → ( 𝑃 ‘ 𝐸 ) = ( ( ♯ ‘ 𝐸 ) / ( ♯ ‘ 𝑂 ) ) ) |
28 |
23 27
|
sylbir |
⊢ ( 𝐸 ⊆ 𝑂 → ( 𝑃 ‘ 𝐸 ) = ( ( ♯ ‘ 𝐸 ) / ( ♯ ‘ 𝑂 ) ) ) |
29 |
12 28
|
ax-mp |
⊢ ( 𝑃 ‘ 𝐸 ) = ( ( ♯ ‘ 𝐸 ) / ( ♯ ‘ 𝑂 ) ) |
30 |
|
hashssdif |
⊢ ( ( 𝑂 ∈ Fin ∧ 𝐸 ⊆ 𝑂 ) → ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) = ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ 𝐸 ) ) ) |
31 |
19 12 30
|
mp2an |
⊢ ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) = ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ 𝐸 ) ) |
32 |
31
|
eqcomi |
⊢ ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ 𝐸 ) ) = ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) |
33 |
|
hashcl |
⊢ ( 𝑂 ∈ Fin → ( ♯ ‘ 𝑂 ) ∈ ℕ0 ) |
34 |
19 33
|
ax-mp |
⊢ ( ♯ ‘ 𝑂 ) ∈ ℕ0 |
35 |
34
|
nn0cni |
⊢ ( ♯ ‘ 𝑂 ) ∈ ℂ |
36 |
|
hashcl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) |
37 |
21 36
|
ax-mp |
⊢ ( ♯ ‘ 𝐸 ) ∈ ℕ0 |
38 |
37
|
nn0cni |
⊢ ( ♯ ‘ 𝐸 ) ∈ ℂ |
39 |
|
difss |
⊢ ( 𝑂 ∖ 𝐸 ) ⊆ 𝑂 |
40 |
|
ssfi |
⊢ ( ( 𝑂 ∈ Fin ∧ ( 𝑂 ∖ 𝐸 ) ⊆ 𝑂 ) → ( 𝑂 ∖ 𝐸 ) ∈ Fin ) |
41 |
19 39 40
|
mp2an |
⊢ ( 𝑂 ∖ 𝐸 ) ∈ Fin |
42 |
|
hashcl |
⊢ ( ( 𝑂 ∖ 𝐸 ) ∈ Fin → ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ∈ ℕ0 ) |
43 |
41 42
|
ax-mp |
⊢ ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ∈ ℕ0 |
44 |
43
|
nn0cni |
⊢ ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ∈ ℂ |
45 |
35 38 44
|
subsub23i |
⊢ ( ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ 𝐸 ) ) = ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ↔ ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ) = ( ♯ ‘ 𝐸 ) ) |
46 |
32 45
|
mpbi |
⊢ ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ) = ( ♯ ‘ 𝐸 ) |
47 |
46
|
oveq1i |
⊢ ( ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ) / ( ♯ ‘ 𝑂 ) ) = ( ( ♯ ‘ 𝐸 ) / ( ♯ ‘ 𝑂 ) ) |
48 |
29 47
|
eqtr4i |
⊢ ( 𝑃 ‘ 𝐸 ) = ( ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ) / ( ♯ ‘ 𝑂 ) ) |
49 |
1 2 3
|
ballotlem1 |
⊢ ( ♯ ‘ 𝑂 ) = ( ( 𝑀 + 𝑁 ) C 𝑀 ) |
50 |
1
|
nnnn0i |
⊢ 𝑀 ∈ ℕ0 |
51 |
|
nnaddcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
52 |
1 2 51
|
mp2an |
⊢ ( 𝑀 + 𝑁 ) ∈ ℕ |
53 |
52
|
nnnn0i |
⊢ ( 𝑀 + 𝑁 ) ∈ ℕ0 |
54 |
1
|
nnrei |
⊢ 𝑀 ∈ ℝ |
55 |
2
|
nnnn0i |
⊢ 𝑁 ∈ ℕ0 |
56 |
54 55
|
nn0addge1i |
⊢ 𝑀 ≤ ( 𝑀 + 𝑁 ) |
57 |
|
elfz2nn0 |
⊢ ( 𝑀 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ∧ 𝑀 ≤ ( 𝑀 + 𝑁 ) ) ) |
58 |
50 53 56 57
|
mpbir3an |
⊢ 𝑀 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) |
59 |
|
bccl2 |
⊢ ( 𝑀 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) → ( ( 𝑀 + 𝑁 ) C 𝑀 ) ∈ ℕ ) |
60 |
58 59
|
ax-mp |
⊢ ( ( 𝑀 + 𝑁 ) C 𝑀 ) ∈ ℕ |
61 |
60
|
nnne0i |
⊢ ( ( 𝑀 + 𝑁 ) C 𝑀 ) ≠ 0 |
62 |
49 61
|
eqnetri |
⊢ ( ♯ ‘ 𝑂 ) ≠ 0 |
63 |
35 62
|
pm3.2i |
⊢ ( ( ♯ ‘ 𝑂 ) ∈ ℂ ∧ ( ♯ ‘ 𝑂 ) ≠ 0 ) |
64 |
|
divsubdir |
⊢ ( ( ( ♯ ‘ 𝑂 ) ∈ ℂ ∧ ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ∈ ℂ ∧ ( ( ♯ ‘ 𝑂 ) ∈ ℂ ∧ ( ♯ ‘ 𝑂 ) ≠ 0 ) ) → ( ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ) / ( ♯ ‘ 𝑂 ) ) = ( ( ( ♯ ‘ 𝑂 ) / ( ♯ ‘ 𝑂 ) ) − ( ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) / ( ♯ ‘ 𝑂 ) ) ) ) |
65 |
35 44 63 64
|
mp3an |
⊢ ( ( ( ♯ ‘ 𝑂 ) − ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) ) / ( ♯ ‘ 𝑂 ) ) = ( ( ( ♯ ‘ 𝑂 ) / ( ♯ ‘ 𝑂 ) ) − ( ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) / ( ♯ ‘ 𝑂 ) ) ) |
66 |
35 62
|
dividi |
⊢ ( ( ♯ ‘ 𝑂 ) / ( ♯ ‘ 𝑂 ) ) = 1 |
67 |
66
|
oveq1i |
⊢ ( ( ( ♯ ‘ 𝑂 ) / ( ♯ ‘ 𝑂 ) ) − ( ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) / ( ♯ ‘ 𝑂 ) ) ) = ( 1 − ( ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) / ( ♯ ‘ 𝑂 ) ) ) |
68 |
48 65 67
|
3eqtri |
⊢ ( 𝑃 ‘ 𝐸 ) = ( 1 − ( ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) / ( ♯ ‘ 𝑂 ) ) ) |
69 |
1 2 3 4 5 6 7 8 9 10
|
ballotlem8 |
⊢ ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) = ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) |
70 |
69
|
oveq1i |
⊢ ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) = ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) |
71 |
70
|
oveq1i |
⊢ ( ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) / ( ♯ ‘ 𝑂 ) ) = ( ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) / ( ♯ ‘ 𝑂 ) ) |
72 |
|
rabxm |
⊢ ( 𝑂 ∖ 𝐸 ) = ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∪ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) |
73 |
72
|
fveq2i |
⊢ ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) = ( ♯ ‘ ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∪ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) |
74 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ⊆ ( 𝑂 ∖ 𝐸 ) |
75 |
74 39
|
sstri |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ⊆ 𝑂 |
76 |
75 17
|
sstri |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ⊆ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) |
77 |
|
ssfi |
⊢ ( ( 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ∧ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ⊆ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ) → { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∈ Fin ) |
78 |
15 76 77
|
mp2an |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∈ Fin |
79 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ⊆ ( 𝑂 ∖ 𝐸 ) |
80 |
79 39
|
sstri |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ⊆ 𝑂 |
81 |
80 17
|
sstri |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ⊆ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) |
82 |
|
ssfi |
⊢ ( ( 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ∧ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ⊆ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ) → { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ∈ Fin ) |
83 |
15 81 82
|
mp2an |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ∈ Fin |
84 |
|
rabnc |
⊢ ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∩ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) = ∅ |
85 |
|
hashun |
⊢ ( ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∈ Fin ∧ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ∈ Fin ∧ ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∩ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) = ∅ ) → ( ♯ ‘ ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∪ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) = ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) ) |
86 |
78 83 84 85
|
mp3an |
⊢ ( ♯ ‘ ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ∪ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) = ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) |
87 |
73 86
|
eqtri |
⊢ ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) = ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) |
88 |
87
|
oveq1i |
⊢ ( ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) / ( ♯ ‘ 𝑂 ) ) = ( ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) / ( ♯ ‘ 𝑂 ) ) |
89 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ⊆ 𝑂 |
90 |
19
|
elexi |
⊢ 𝑂 ∈ V |
91 |
90
|
elpw2 |
⊢ ( { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ∈ 𝒫 𝑂 ↔ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ⊆ 𝑂 ) |
92 |
89 91
|
mpbir |
⊢ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ∈ 𝒫 𝑂 |
93 |
|
fveq2 |
⊢ ( 𝑥 = { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝑥 = { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } → ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) = ( ( ♯ ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) ) |
95 |
|
ovex |
⊢ ( ( ♯ ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) ∈ V |
96 |
94 4 95
|
fvmpt |
⊢ ( { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ∈ 𝒫 𝑂 → ( 𝑃 ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) = ( ( ♯ ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) ) |
97 |
92 96
|
ax-mp |
⊢ ( 𝑃 ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) = ( ( ♯ ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) |
98 |
1 2 3 4
|
ballotlem2 |
⊢ ( 𝑃 ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) = ( 𝑁 / ( 𝑀 + 𝑁 ) ) |
99 |
|
nfrab1 |
⊢ Ⅎ 𝑐 { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } |
100 |
|
nfrab1 |
⊢ Ⅎ 𝑐 { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } |
101 |
99 100
|
dfss2f |
⊢ ( { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ⊆ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ↔ ∀ 𝑐 ( 𝑐 ∈ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } → 𝑐 ∈ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) |
102 |
1 2 3 4 5 6
|
ballotlem4 |
⊢ ( 𝑐 ∈ 𝑂 → ( ¬ 1 ∈ 𝑐 → ¬ 𝑐 ∈ 𝐸 ) ) |
103 |
102
|
imdistani |
⊢ ( ( 𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐 ) → ( 𝑐 ∈ 𝑂 ∧ ¬ 𝑐 ∈ 𝐸 ) ) |
104 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ↔ ( 𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐 ) ) |
105 |
|
eldif |
⊢ ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↔ ( 𝑐 ∈ 𝑂 ∧ ¬ 𝑐 ∈ 𝐸 ) ) |
106 |
103 104 105
|
3imtr4i |
⊢ ( 𝑐 ∈ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } → 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ) |
107 |
104
|
simprbi |
⊢ ( 𝑐 ∈ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } → ¬ 1 ∈ 𝑐 ) |
108 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ↔ ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∧ ¬ 1 ∈ 𝑐 ) ) |
109 |
106 107 108
|
sylanbrc |
⊢ ( 𝑐 ∈ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } → 𝑐 ∈ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) |
110 |
101 109
|
mpgbir |
⊢ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ⊆ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } |
111 |
|
rabss2 |
⊢ ( ( 𝑂 ∖ 𝐸 ) ⊆ 𝑂 → { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ⊆ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) |
112 |
39 111
|
ax-mp |
⊢ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ⊆ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } |
113 |
110 112
|
eqssi |
⊢ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } = { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } |
114 |
113
|
fveq2i |
⊢ ( ♯ ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) = ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) |
115 |
114
|
oveq1i |
⊢ ( ( ♯ ‘ { 𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) = ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) |
116 |
97 98 115
|
3eqtr3i |
⊢ ( 𝑁 / ( 𝑀 + 𝑁 ) ) = ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) |
117 |
116
|
oveq2i |
⊢ ( 2 · ( 𝑁 / ( 𝑀 + 𝑁 ) ) ) = ( 2 · ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) ) |
118 |
|
2cn |
⊢ 2 ∈ ℂ |
119 |
|
hashcl |
⊢ ( { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ∈ Fin → ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ∈ ℕ0 ) |
120 |
83 119
|
ax-mp |
⊢ ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ∈ ℕ0 |
121 |
120
|
nn0cni |
⊢ ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ∈ ℂ |
122 |
118 121 35 62
|
divassi |
⊢ ( ( 2 · ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) / ( ♯ ‘ 𝑂 ) ) = ( 2 · ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) / ( ♯ ‘ 𝑂 ) ) ) |
123 |
121
|
2timesi |
⊢ ( 2 · ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) = ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) |
124 |
123
|
oveq1i |
⊢ ( ( 2 · ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) / ( ♯ ‘ 𝑂 ) ) = ( ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) / ( ♯ ‘ 𝑂 ) ) |
125 |
117 122 124
|
3eqtr2i |
⊢ ( 2 · ( 𝑁 / ( 𝑀 + 𝑁 ) ) ) = ( ( ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) + ( ♯ ‘ { 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ∣ ¬ 1 ∈ 𝑐 } ) ) / ( ♯ ‘ 𝑂 ) ) |
126 |
71 88 125
|
3eqtr4ri |
⊢ ( 2 · ( 𝑁 / ( 𝑀 + 𝑁 ) ) ) = ( ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) / ( ♯ ‘ 𝑂 ) ) |
127 |
126
|
oveq2i |
⊢ ( 1 − ( 2 · ( 𝑁 / ( 𝑀 + 𝑁 ) ) ) ) = ( 1 − ( ( ♯ ‘ ( 𝑂 ∖ 𝐸 ) ) / ( ♯ ‘ 𝑂 ) ) ) |
128 |
52
|
nncni |
⊢ ( 𝑀 + 𝑁 ) ∈ ℂ |
129 |
2
|
nncni |
⊢ 𝑁 ∈ ℂ |
130 |
118 129
|
mulcli |
⊢ ( 2 · 𝑁 ) ∈ ℂ |
131 |
52
|
nnne0i |
⊢ ( 𝑀 + 𝑁 ) ≠ 0 |
132 |
128 131
|
pm3.2i |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ≠ 0 ) |
133 |
|
divsubdir |
⊢ ( ( ( 𝑀 + 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ∈ ℂ ∧ ( ( 𝑀 + 𝑁 ) ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ≠ 0 ) ) → ( ( ( 𝑀 + 𝑁 ) − ( 2 · 𝑁 ) ) / ( 𝑀 + 𝑁 ) ) = ( ( ( 𝑀 + 𝑁 ) / ( 𝑀 + 𝑁 ) ) − ( ( 2 · 𝑁 ) / ( 𝑀 + 𝑁 ) ) ) ) |
134 |
128 130 132 133
|
mp3an |
⊢ ( ( ( 𝑀 + 𝑁 ) − ( 2 · 𝑁 ) ) / ( 𝑀 + 𝑁 ) ) = ( ( ( 𝑀 + 𝑁 ) / ( 𝑀 + 𝑁 ) ) − ( ( 2 · 𝑁 ) / ( 𝑀 + 𝑁 ) ) ) |
135 |
129
|
2timesi |
⊢ ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) |
136 |
135
|
oveq2i |
⊢ ( ( 𝑀 + 𝑁 ) − ( 2 · 𝑁 ) ) = ( ( 𝑀 + 𝑁 ) − ( 𝑁 + 𝑁 ) ) |
137 |
1
|
nncni |
⊢ 𝑀 ∈ ℂ |
138 |
137 129 129 129
|
addsub4i |
⊢ ( ( 𝑀 + 𝑁 ) − ( 𝑁 + 𝑁 ) ) = ( ( 𝑀 − 𝑁 ) + ( 𝑁 − 𝑁 ) ) |
139 |
129
|
subidi |
⊢ ( 𝑁 − 𝑁 ) = 0 |
140 |
139
|
oveq2i |
⊢ ( ( 𝑀 − 𝑁 ) + ( 𝑁 − 𝑁 ) ) = ( ( 𝑀 − 𝑁 ) + 0 ) |
141 |
137 129
|
subcli |
⊢ ( 𝑀 − 𝑁 ) ∈ ℂ |
142 |
141
|
addid1i |
⊢ ( ( 𝑀 − 𝑁 ) + 0 ) = ( 𝑀 − 𝑁 ) |
143 |
138 140 142
|
3eqtri |
⊢ ( ( 𝑀 + 𝑁 ) − ( 𝑁 + 𝑁 ) ) = ( 𝑀 − 𝑁 ) |
144 |
136 143
|
eqtri |
⊢ ( ( 𝑀 + 𝑁 ) − ( 2 · 𝑁 ) ) = ( 𝑀 − 𝑁 ) |
145 |
144
|
oveq1i |
⊢ ( ( ( 𝑀 + 𝑁 ) − ( 2 · 𝑁 ) ) / ( 𝑀 + 𝑁 ) ) = ( ( 𝑀 − 𝑁 ) / ( 𝑀 + 𝑁 ) ) |
146 |
128 131
|
dividi |
⊢ ( ( 𝑀 + 𝑁 ) / ( 𝑀 + 𝑁 ) ) = 1 |
147 |
118 129 128 131
|
divassi |
⊢ ( ( 2 · 𝑁 ) / ( 𝑀 + 𝑁 ) ) = ( 2 · ( 𝑁 / ( 𝑀 + 𝑁 ) ) ) |
148 |
146 147
|
oveq12i |
⊢ ( ( ( 𝑀 + 𝑁 ) / ( 𝑀 + 𝑁 ) ) − ( ( 2 · 𝑁 ) / ( 𝑀 + 𝑁 ) ) ) = ( 1 − ( 2 · ( 𝑁 / ( 𝑀 + 𝑁 ) ) ) ) |
149 |
134 145 148
|
3eqtr3ri |
⊢ ( 1 − ( 2 · ( 𝑁 / ( 𝑀 + 𝑁 ) ) ) ) = ( ( 𝑀 − 𝑁 ) / ( 𝑀 + 𝑁 ) ) |
150 |
68 127 149
|
3eqtr2i |
⊢ ( 𝑃 ‘ 𝐸 ) = ( ( 𝑀 − 𝑁 ) / ( 𝑀 + 𝑁 ) ) |