Metamath Proof Explorer
Description: Lemma for barbari and the other Aristotelian syllogisms with
existential assumption. (Contributed by BJ, 16-Sep-2022)
|
|
Ref |
Expression |
|
Hypotheses |
barbarilem.min |
⊢ ∃ 𝑥 𝜑 |
|
|
barbarilem.maj |
⊢ ∀ 𝑥 ( 𝜑 → 𝜓 ) |
|
Assertion |
barbarilem |
⊢ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
barbarilem.min |
⊢ ∃ 𝑥 𝜑 |
| 2 |
|
barbarilem.maj |
⊢ ∀ 𝑥 ( 𝜑 → 𝜓 ) |
| 3 |
|
exintr |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 4 |
2 1 3
|
mp2 |
⊢ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) |