Metamath Proof Explorer


Theorem barbarilem

Description: Lemma for barbari and the other Aristotelian syllogisms with existential assumption. (Contributed by BJ, 16-Sep-2022)

Ref Expression
Hypotheses barbarilem.min 𝑥 𝜑
barbarilem.maj 𝑥 ( 𝜑𝜓 )
Assertion barbarilem 𝑥 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 barbarilem.min 𝑥 𝜑
2 barbarilem.maj 𝑥 ( 𝜑𝜓 )
3 exintr ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑𝜓 ) ) )
4 2 1 3 mp2 𝑥 ( 𝜑𝜓 )