Step |
Hyp |
Ref |
Expression |
1 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ { ∅ } ) |
2 |
|
undif1 |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) = ( 𝐵 ∪ { ∅ } ) |
3 |
1 2
|
sseqtrri |
⊢ 𝐵 ⊆ ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) |
4 |
|
snex |
⊢ { ∅ } ∈ V |
5 |
|
unexg |
⊢ ( ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ∧ { ∅ } ∈ V ) → ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) |
6 |
4 5
|
mpan2 |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases → ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) |
7 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) ∧ ( ( 𝐵 ∖ { ∅ } ) ∪ { ∅ } ) ∈ V ) → 𝐵 ∈ V ) |
8 |
3 6 7
|
sylancr |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases → 𝐵 ∈ V ) |
9 |
|
elex |
⊢ ( 𝐵 ∈ TopBases → 𝐵 ∈ V ) |
10 |
|
indif1 |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ( ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∖ { ∅ } ) |
11 |
10
|
unieqi |
⊢ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ∪ ( ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∖ { ∅ } ) |
12 |
|
unidif0 |
⊢ ∪ ( ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∖ { ∅ } ) = ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
13 |
11 12
|
eqtri |
⊢ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
14 |
13
|
sseq2i |
⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
15 |
14
|
ralbii |
⊢ ( ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
16 |
|
inss2 |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 |
17 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑦 ∈ { ∅ } ) |
18 |
|
elsni |
⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) |
19 |
17 18
|
syl |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑦 = ∅ ) |
20 |
|
0ss |
⊢ ∅ ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
21 |
19 20
|
eqsstrdi |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑦 ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
22 |
16 21
|
sstrid |
⊢ ( 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
23 |
22
|
rgen |
⊢ ∀ 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
24 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝐵 ∩ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∧ ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
25 |
23 24
|
mpbiran |
⊢ ( ∀ 𝑦 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
26 |
|
inundif |
⊢ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) = 𝐵 |
27 |
26
|
raleqi |
⊢ ( ∀ 𝑦 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
28 |
15 25 27
|
3bitr2i |
⊢ ( ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
29 |
28
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
30 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 |
31 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑥 ∈ { ∅ } ) |
32 |
|
elsni |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
33 |
31 32
|
syl |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑥 = ∅ ) |
34 |
33 20
|
eqsstrdi |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
35 |
30 34
|
sstrid |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
36 |
35
|
ralrimivw |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
37 |
36
|
rgen |
⊢ ∀ 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
38 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ ( 𝐵 ∩ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
39 |
37 38
|
mpbiran |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
40 |
26
|
raleqi |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐵 ∩ { ∅ } ) ∪ ( 𝐵 ∖ { ∅ } ) ) ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
41 |
29 39 40
|
3bitr2i |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
42 |
41
|
a1i |
⊢ ( 𝐵 ∈ V → ( ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
43 |
|
difexg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { ∅ } ) ∈ V ) |
44 |
|
isbasisg |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ V → ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
45 |
43 44
|
syl |
⊢ ( 𝐵 ∈ V → ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { ∅ } ) ∀ 𝑦 ∈ ( 𝐵 ∖ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐵 ∖ { ∅ } ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
46 |
|
isbasisg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
47 |
42 45 46
|
3bitr4d |
⊢ ( 𝐵 ∈ V → ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ 𝐵 ∈ TopBases ) ) |
48 |
8 9 47
|
pm5.21nii |
⊢ ( ( 𝐵 ∖ { ∅ } ) ∈ TopBases ↔ 𝐵 ∈ TopBases ) |