Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2 · 𝑚 ) = ( 2 · 𝑛 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
4 |
3
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ↑ - 2 ) = ( 𝑛 ↑ - 2 ) ) |
6 |
5
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑ - 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑ - 2 ) ) |
7 |
|
seqeq3 |
⊢ ( ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑ - 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑ - 2 ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑ - 2 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑ - 2 ) ) ) ) |
8 |
6 7
|
ax-mp |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑ - 2 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑ - 2 ) ) ) |
9 |
|
eqid |
⊢ ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) = ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) |
10 |
|
eqid |
⊢ ( ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ∘f · ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { - 2 } ) ∘f · ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ) = ( ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ∘f · ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { - 2 } ) ∘f · ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ) |
11 |
|
eqid |
⊢ ( ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ∘f · ( ( ℕ × { 1 } ) ∘f + ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) = ( ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ∘f · ( ( ℕ × { 1 } ) ∘f + ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) |
12 |
4 8 9 10 11
|
basellem9 |
⊢ Σ 𝑘 ∈ ℕ ( 𝑘 ↑ - 2 ) = ( ( π ↑ 2 ) / 6 ) |