Metamath Proof Explorer


Theorem basel

Description: The sum of the inverse squares is _pi ^ 2 / 6 . This is commonly known as the Basel problem, with the first known proof attributed to Euler. See http://en.wikipedia.org/wiki/Basel_problem . This particular proof approach is due to Cauchy (1821). This is Metamath 100 proof #14. (Contributed by Mario Carneiro, 30-Jul-2014)

Ref Expression
Assertion basel Σ 𝑘 ∈ ℕ ( 𝑘 ↑ - 2 ) = ( ( π ↑ 2 ) / 6 )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑚 = 𝑛 → ( 2 · 𝑚 ) = ( 2 · 𝑛 ) )
2 1 oveq1d ( 𝑚 = 𝑛 → ( ( 2 · 𝑚 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) )
3 2 oveq2d ( 𝑚 = 𝑛 → ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) )
4 3 cbvmptv ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) )
5 oveq1 ( 𝑚 = 𝑛 → ( 𝑚 ↑ - 2 ) = ( 𝑛 ↑ - 2 ) )
6 5 cbvmptv ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑ - 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑ - 2 ) )
7 seqeq3 ( ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑ - 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑ - 2 ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑ - 2 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑ - 2 ) ) ) )
8 6 7 ax-mp seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( 𝑚 ↑ - 2 ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑛 ↑ - 2 ) ) )
9 eqid ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) = ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) )
10 eqid ( ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ∘f · ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { - 2 } ) ∘f · ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ) = ( ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ∘f · ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { - 2 } ) ∘f · ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) )
11 eqid ( ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ∘f · ( ( ℕ × { 1 } ) ∘f + ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) = ( ( ( ℕ × { ( ( π ↑ 2 ) / 6 ) } ) ∘f · ( ( ℕ × { 1 } ) ∘f − ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) ) ∘f · ( ( ℕ × { 1 } ) ∘f + ( 𝑚 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑚 ) + 1 ) ) ) ) )
12 4 8 9 10 11 basellem9 Σ 𝑘 ∈ ℕ ( 𝑘 ↑ - 2 ) = ( ( π ↑ 2 ) / 6 )