Step |
Hyp |
Ref |
Expression |
1 |
|
basel.n |
⊢ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) |
2 |
|
elfznn |
⊢ ( 𝐾 ∈ ( 1 ... 𝑀 ) → 𝐾 ∈ ℕ ) |
3 |
2
|
nnrpd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑀 ) → 𝐾 ∈ ℝ+ ) |
4 |
|
pirp |
⊢ π ∈ ℝ+ |
5 |
|
rpmulcl |
⊢ ( ( 𝐾 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 𝐾 · π ) ∈ ℝ+ ) |
6 |
3 4 5
|
sylancl |
⊢ ( 𝐾 ∈ ( 1 ... 𝑀 ) → ( 𝐾 · π ) ∈ ℝ+ ) |
7 |
|
2nn |
⊢ 2 ∈ ℕ |
8 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 2 · 𝑀 ) ∈ ℕ ) |
9 |
7 8
|
mpan |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℕ ) |
10 |
9
|
peano2nnd |
⊢ ( 𝑀 ∈ ℕ → ( ( 2 · 𝑀 ) + 1 ) ∈ ℕ ) |
11 |
1 10
|
eqeltrid |
⊢ ( 𝑀 ∈ ℕ → 𝑁 ∈ ℕ ) |
12 |
11
|
nnrpd |
⊢ ( 𝑀 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
13 |
|
rpdivcl |
⊢ ( ( ( 𝐾 · π ) ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝐾 · π ) / 𝑁 ) ∈ ℝ+ ) |
14 |
6 12 13
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐾 · π ) / 𝑁 ) ∈ ℝ+ ) |
15 |
14
|
rpred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐾 · π ) / 𝑁 ) ∈ ℝ ) |
16 |
14
|
rpgt0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 0 < ( ( 𝐾 · π ) / 𝑁 ) ) |
17 |
2
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℕ ) |
18 |
|
nnmulcl |
⊢ ( ( 𝐾 ∈ ℕ ∧ 2 ∈ ℕ ) → ( 𝐾 · 2 ) ∈ ℕ ) |
19 |
17 7 18
|
sylancl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 · 2 ) ∈ ℕ ) |
20 |
19
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 · 2 ) ∈ ℝ ) |
21 |
9
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑀 ) ∈ ℕ ) |
22 |
21
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑀 ) ∈ ℝ ) |
23 |
11
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℕ ) |
24 |
23
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℝ ) |
25 |
1 24
|
eqeltrrid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( ( 2 · 𝑀 ) + 1 ) ∈ ℝ ) |
26 |
17
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℂ ) |
27 |
|
2cn |
⊢ 2 ∈ ℂ |
28 |
|
mulcom |
⊢ ( ( 𝐾 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝐾 · 2 ) = ( 2 · 𝐾 ) ) |
29 |
26 27 28
|
sylancl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 · 2 ) = ( 2 · 𝐾 ) ) |
30 |
|
elfzle2 |
⊢ ( 𝐾 ∈ ( 1 ... 𝑀 ) → 𝐾 ≤ 𝑀 ) |
31 |
30
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ≤ 𝑀 ) |
32 |
17
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ∈ ℝ ) |
33 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 𝑀 ∈ ℝ ) |
35 |
|
2re |
⊢ 2 ∈ ℝ |
36 |
|
2pos |
⊢ 0 < 2 |
37 |
35 36
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
38 |
37
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
39 |
|
lemul2 |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐾 ≤ 𝑀 ↔ ( 2 · 𝐾 ) ≤ ( 2 · 𝑀 ) ) ) |
40 |
32 34 38 39
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 ≤ 𝑀 ↔ ( 2 · 𝐾 ) ≤ ( 2 · 𝑀 ) ) ) |
41 |
31 40
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝐾 ) ≤ ( 2 · 𝑀 ) ) |
42 |
29 41
|
eqbrtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 · 2 ) ≤ ( 2 · 𝑀 ) ) |
43 |
22
|
ltp1d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑀 ) < ( ( 2 · 𝑀 ) + 1 ) ) |
44 |
20 22 25 42 43
|
lelttrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 · 2 ) < ( ( 2 · 𝑀 ) + 1 ) ) |
45 |
44 1
|
breqtrrdi |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 · 2 ) < 𝑁 ) |
46 |
19
|
nngt0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 0 < ( 𝐾 · 2 ) ) |
47 |
23
|
nngt0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 0 < 𝑁 ) |
48 |
|
pire |
⊢ π ∈ ℝ |
49 |
|
remulcl |
⊢ ( ( 𝐾 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝐾 · π ) ∈ ℝ ) |
50 |
32 48 49
|
sylancl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 · π ) ∈ ℝ ) |
51 |
6
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 · π ) ∈ ℝ+ ) |
52 |
51
|
rpgt0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 0 < ( 𝐾 · π ) ) |
53 |
|
ltdiv2 |
⊢ ( ( ( ( 𝐾 · 2 ) ∈ ℝ ∧ 0 < ( 𝐾 · 2 ) ) ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ∧ ( ( 𝐾 · π ) ∈ ℝ ∧ 0 < ( 𝐾 · π ) ) ) → ( ( 𝐾 · 2 ) < 𝑁 ↔ ( ( 𝐾 · π ) / 𝑁 ) < ( ( 𝐾 · π ) / ( 𝐾 · 2 ) ) ) ) |
54 |
20 46 24 47 50 52 53
|
syl222anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐾 · 2 ) < 𝑁 ↔ ( ( 𝐾 · π ) / 𝑁 ) < ( ( 𝐾 · π ) / ( 𝐾 · 2 ) ) ) ) |
55 |
45 54
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐾 · π ) / 𝑁 ) < ( ( 𝐾 · π ) / ( 𝐾 · 2 ) ) ) |
56 |
|
picn |
⊢ π ∈ ℂ |
57 |
56
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → π ∈ ℂ ) |
58 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
59 |
58
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
60 |
17
|
nnne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ≠ 0 ) |
61 |
|
divcan5 |
⊢ ( ( π ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 𝐾 ∈ ℂ ∧ 𝐾 ≠ 0 ) ) → ( ( 𝐾 · π ) / ( 𝐾 · 2 ) ) = ( π / 2 ) ) |
62 |
57 59 26 60 61
|
syl112anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐾 · π ) / ( 𝐾 · 2 ) ) = ( π / 2 ) ) |
63 |
55 62
|
breqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐾 · π ) / 𝑁 ) < ( π / 2 ) ) |
64 |
|
0xr |
⊢ 0 ∈ ℝ* |
65 |
|
rehalfcl |
⊢ ( π ∈ ℝ → ( π / 2 ) ∈ ℝ ) |
66 |
|
rexr |
⊢ ( ( π / 2 ) ∈ ℝ → ( π / 2 ) ∈ ℝ* ) |
67 |
48 65 66
|
mp2b |
⊢ ( π / 2 ) ∈ ℝ* |
68 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( ( 𝐾 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( ( 𝐾 · π ) / 𝑁 ) ∈ ℝ ∧ 0 < ( ( 𝐾 · π ) / 𝑁 ) ∧ ( ( 𝐾 · π ) / 𝑁 ) < ( π / 2 ) ) ) ) |
69 |
64 67 68
|
mp2an |
⊢ ( ( ( 𝐾 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( ( 𝐾 · π ) / 𝑁 ) ∈ ℝ ∧ 0 < ( ( 𝐾 · π ) / 𝑁 ) ∧ ( ( 𝐾 · π ) / 𝑁 ) < ( π / 2 ) ) ) |
70 |
15 16 63 69
|
syl3anbrc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐾 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |