| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basel.n |
⊢ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) |
| 2 |
|
basel.p |
⊢ 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) · ( 𝑡 ↑ 𝑗 ) ) ) |
| 3 |
|
ssidd |
⊢ ( 𝑀 ∈ ℕ → ℂ ⊆ ℂ ) |
| 4 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 5 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
| 6 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 2 · 𝑛 ) = ( 2 · 𝑗 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( 𝑁 C ( 2 · 𝑛 ) ) = ( 𝑁 C ( 2 · 𝑗 ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑀 − 𝑛 ) = ( 𝑀 − 𝑗 ) ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( - 1 ↑ ( 𝑀 − 𝑛 ) ) = ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) |
| 10 |
7 9
|
oveq12d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) |
| 12 |
|
ovex |
⊢ ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) ∈ V |
| 13 |
10 11 12
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) ) |
| 14 |
5 13
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) ) |
| 16 |
|
2nn |
⊢ 2 ∈ ℕ |
| 17 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 2 · 𝑀 ) ∈ ℕ ) |
| 18 |
16 17
|
mpan |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℕ ) |
| 19 |
18
|
peano2nnd |
⊢ ( 𝑀 ∈ ℕ → ( ( 2 · 𝑀 ) + 1 ) ∈ ℕ ) |
| 20 |
1 19
|
eqeltrid |
⊢ ( 𝑀 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 21 |
20
|
nnnn0d |
⊢ ( 𝑀 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 22 |
|
2z |
⊢ 2 ∈ ℤ |
| 23 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
| 24 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℤ ) |
| 25 |
22 23 24
|
sylancr |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℤ ) |
| 26 |
|
bccl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 2 · 𝑛 ) ∈ ℤ ) → ( 𝑁 C ( 2 · 𝑛 ) ) ∈ ℕ0 ) |
| 27 |
21 25 26
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 C ( 2 · 𝑛 ) ) ∈ ℕ0 ) |
| 28 |
27
|
nn0cnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 C ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 29 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 30 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
| 31 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 32 |
|
zsubcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀 − 𝑛 ) ∈ ℤ ) |
| 33 |
31 23 32
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 − 𝑛 ) ∈ ℤ ) |
| 34 |
|
expclz |
⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( 𝑀 − 𝑛 ) ∈ ℤ ) → ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ∈ ℂ ) |
| 35 |
29 30 33 34
|
mp3an12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ∈ ℂ ) |
| 36 |
28 35
|
mulcld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ∈ ℂ ) |
| 37 |
36
|
fmpttd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 38 |
|
ffvelcdm |
⊢ ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) : ℕ0 ⟶ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 39 |
37 5 38
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 40 |
15 39
|
eqeltrrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) ∈ ℂ ) |
| 41 |
3 4 40
|
elplyd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) · ( 𝑡 ↑ 𝑗 ) ) ) ∈ ( Poly ‘ ℂ ) ) |
| 42 |
2 41
|
eqeltrid |
⊢ ( 𝑀 ∈ ℕ → 𝑃 ∈ ( Poly ‘ ℂ ) ) |
| 43 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 44 |
|
nn0re |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℝ ) |
| 45 |
|
ltnle |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑀 < 𝑗 ↔ ¬ 𝑗 ≤ 𝑀 ) ) |
| 46 |
43 44 45
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 < 𝑗 ↔ ¬ 𝑗 ≤ 𝑀 ) ) |
| 47 |
13
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) ) |
| 48 |
21
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑁 ∈ ℕ0 ) |
| 49 |
|
nn0z |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℤ ) |
| 50 |
49
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑗 ∈ ℤ ) |
| 51 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 2 · 𝑗 ) ∈ ℤ ) |
| 52 |
22 50 51
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · 𝑗 ) ∈ ℤ ) |
| 53 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 54 |
53
|
2timesi |
⊢ ( 2 · 1 ) = ( 1 + 1 ) |
| 55 |
54
|
oveq2i |
⊢ ( ( 2 · 𝑀 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑀 ) + ( 1 + 1 ) ) |
| 56 |
|
2cnd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 2 ∈ ℂ ) |
| 57 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑀 ∈ ℂ ) |
| 59 |
53
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 1 ∈ ℂ ) |
| 60 |
56 58 59
|
adddid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · ( 𝑀 + 1 ) ) = ( ( 2 · 𝑀 ) + ( 2 · 1 ) ) ) |
| 61 |
1
|
oveq1i |
⊢ ( 𝑁 + 1 ) = ( ( ( 2 · 𝑀 ) + 1 ) + 1 ) |
| 62 |
18
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · 𝑀 ) ∈ ℕ ) |
| 63 |
62
|
nncnd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · 𝑀 ) ∈ ℂ ) |
| 64 |
63 59 59
|
addassd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( ( 2 · 𝑀 ) + 1 ) + 1 ) = ( ( 2 · 𝑀 ) + ( 1 + 1 ) ) ) |
| 65 |
61 64
|
eqtrid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑁 + 1 ) = ( ( 2 · 𝑀 ) + ( 1 + 1 ) ) ) |
| 66 |
55 60 65
|
3eqtr4a |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · ( 𝑀 + 1 ) ) = ( 𝑁 + 1 ) ) |
| 67 |
|
zltp1le |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑀 < 𝑗 ↔ ( 𝑀 + 1 ) ≤ 𝑗 ) ) |
| 68 |
31 49 67
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 < 𝑗 ↔ ( 𝑀 + 1 ) ≤ 𝑗 ) ) |
| 69 |
68
|
biimpa |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑀 + 1 ) ≤ 𝑗 ) |
| 70 |
43
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑀 ∈ ℝ ) |
| 71 |
|
peano2re |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) |
| 72 |
70 71
|
syl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑀 + 1 ) ∈ ℝ ) |
| 73 |
44
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑗 ∈ ℝ ) |
| 74 |
|
2re |
⊢ 2 ∈ ℝ |
| 75 |
|
2pos |
⊢ 0 < 2 |
| 76 |
74 75
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 77 |
76
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 78 |
|
lemul2 |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑀 + 1 ) ≤ 𝑗 ↔ ( 2 · ( 𝑀 + 1 ) ) ≤ ( 2 · 𝑗 ) ) ) |
| 79 |
72 73 77 78
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 𝑀 + 1 ) ≤ 𝑗 ↔ ( 2 · ( 𝑀 + 1 ) ) ≤ ( 2 · 𝑗 ) ) ) |
| 80 |
69 79
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · ( 𝑀 + 1 ) ) ≤ ( 2 · 𝑗 ) ) |
| 81 |
66 80
|
eqbrtrrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑁 + 1 ) ≤ ( 2 · 𝑗 ) ) |
| 82 |
20
|
nnzd |
⊢ ( 𝑀 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 83 |
82
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑁 ∈ ℤ ) |
| 84 |
|
zltp1le |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 2 · 𝑗 ) ∈ ℤ ) → ( 𝑁 < ( 2 · 𝑗 ) ↔ ( 𝑁 + 1 ) ≤ ( 2 · 𝑗 ) ) ) |
| 85 |
83 52 84
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑁 < ( 2 · 𝑗 ) ↔ ( 𝑁 + 1 ) ≤ ( 2 · 𝑗 ) ) ) |
| 86 |
81 85
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑁 < ( 2 · 𝑗 ) ) |
| 87 |
86
|
olcd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 2 · 𝑗 ) < 0 ∨ 𝑁 < ( 2 · 𝑗 ) ) ) |
| 88 |
|
bcval4 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 2 · 𝑗 ) ∈ ℤ ∧ ( ( 2 · 𝑗 ) < 0 ∨ 𝑁 < ( 2 · 𝑗 ) ) ) → ( 𝑁 C ( 2 · 𝑗 ) ) = 0 ) |
| 89 |
48 52 87 88
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑁 C ( 2 · 𝑗 ) ) = 0 ) |
| 90 |
89
|
oveq1d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) = ( 0 · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) ) |
| 91 |
|
zsubcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑀 − 𝑗 ) ∈ ℤ ) |
| 92 |
31 49 91
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 − 𝑗 ) ∈ ℤ ) |
| 93 |
|
expclz |
⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( 𝑀 − 𝑗 ) ∈ ℤ ) → ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ∈ ℂ ) |
| 94 |
29 30 92 93
|
mp3an12i |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ∈ ℂ ) |
| 95 |
94
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ∈ ℂ ) |
| 96 |
95
|
mul02d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 0 · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) = 0 ) |
| 97 |
47 90 96
|
3eqtrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) = 0 ) |
| 98 |
97
|
ex |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 < 𝑗 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) = 0 ) ) |
| 99 |
46 98
|
sylbird |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ¬ 𝑗 ≤ 𝑀 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) = 0 ) ) |
| 100 |
99
|
necon1ad |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) ≠ 0 → 𝑗 ≤ 𝑀 ) ) |
| 101 |
100
|
ralrimiva |
⊢ ( 𝑀 ∈ ℕ → ∀ 𝑗 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) ≠ 0 → 𝑗 ≤ 𝑀 ) ) |
| 102 |
|
plyco0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) : ℕ0 ⟶ ℂ ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ↔ ∀ 𝑗 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) ≠ 0 → 𝑗 ≤ 𝑀 ) ) ) |
| 103 |
4 37 102
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ↔ ∀ 𝑗 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) ≠ 0 → 𝑗 ≤ 𝑀 ) ) ) |
| 104 |
101 103
|
mpbird |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
| 105 |
14
|
oveq1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡 ↑ 𝑗 ) ) = ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) · ( 𝑡 ↑ 𝑗 ) ) ) |
| 106 |
105
|
sumeq2i |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡 ↑ 𝑗 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) · ( 𝑡 ↑ 𝑗 ) ) |
| 107 |
106
|
mpteq2i |
⊢ ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡 ↑ 𝑗 ) ) ) = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) · ( 𝑡 ↑ 𝑗 ) ) ) |
| 108 |
2 107
|
eqtr4i |
⊢ 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡 ↑ 𝑗 ) ) ) |
| 109 |
108
|
a1i |
⊢ ( 𝑀 ∈ ℕ → 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡 ↑ 𝑗 ) ) ) ) |
| 110 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 2 · 𝑛 ) = ( 2 · 𝑀 ) ) |
| 111 |
110
|
oveq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝑁 C ( 2 · 𝑛 ) ) = ( 𝑁 C ( 2 · 𝑀 ) ) ) |
| 112 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 − 𝑛 ) = ( 𝑀 − 𝑀 ) ) |
| 113 |
112
|
oveq2d |
⊢ ( 𝑛 = 𝑀 → ( - 1 ↑ ( 𝑀 − 𝑛 ) ) = ( - 1 ↑ ( 𝑀 − 𝑀 ) ) ) |
| 114 |
111 113
|
oveq12d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) = ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀 − 𝑀 ) ) ) ) |
| 115 |
|
ovex |
⊢ ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀 − 𝑀 ) ) ) ∈ V |
| 116 |
114 11 115
|
fvmpt |
⊢ ( 𝑀 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑀 ) = ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀 − 𝑀 ) ) ) ) |
| 117 |
4 116
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑀 ) = ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀 − 𝑀 ) ) ) ) |
| 118 |
57
|
subidd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 𝑀 ) = 0 ) |
| 119 |
118
|
oveq2d |
⊢ ( 𝑀 ∈ ℕ → ( - 1 ↑ ( 𝑀 − 𝑀 ) ) = ( - 1 ↑ 0 ) ) |
| 120 |
|
exp0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 ) |
| 121 |
29 120
|
ax-mp |
⊢ ( - 1 ↑ 0 ) = 1 |
| 122 |
119 121
|
eqtrdi |
⊢ ( 𝑀 ∈ ℕ → ( - 1 ↑ ( 𝑀 − 𝑀 ) ) = 1 ) |
| 123 |
122
|
oveq2d |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀 − 𝑀 ) ) ) = ( ( 𝑁 C ( 2 · 𝑀 ) ) · 1 ) ) |
| 124 |
18
|
nnred |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℝ ) |
| 125 |
124
|
lep1d |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ≤ ( ( 2 · 𝑀 ) + 1 ) ) |
| 126 |
125 1
|
breqtrrdi |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ≤ 𝑁 ) |
| 127 |
18
|
nnnn0d |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℕ0 ) |
| 128 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 129 |
127 128
|
eleqtrdi |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 130 |
|
elfz5 |
⊢ ( ( ( 2 · 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 2 · 𝑀 ) ∈ ( 0 ... 𝑁 ) ↔ ( 2 · 𝑀 ) ≤ 𝑁 ) ) |
| 131 |
129 82 130
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( ( 2 · 𝑀 ) ∈ ( 0 ... 𝑁 ) ↔ ( 2 · 𝑀 ) ≤ 𝑁 ) ) |
| 132 |
126 131
|
mpbird |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ( 0 ... 𝑁 ) ) |
| 133 |
|
bccl2 |
⊢ ( ( 2 · 𝑀 ) ∈ ( 0 ... 𝑁 ) → ( 𝑁 C ( 2 · 𝑀 ) ) ∈ ℕ ) |
| 134 |
132 133
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑁 C ( 2 · 𝑀 ) ) ∈ ℕ ) |
| 135 |
134
|
nncnd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑁 C ( 2 · 𝑀 ) ) ∈ ℂ ) |
| 136 |
135
|
mulridd |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑁 C ( 2 · 𝑀 ) ) · 1 ) = ( 𝑁 C ( 2 · 𝑀 ) ) ) |
| 137 |
117 123 136
|
3eqtrd |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑀 ) = ( 𝑁 C ( 2 · 𝑀 ) ) ) |
| 138 |
134
|
nnne0d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑁 C ( 2 · 𝑀 ) ) ≠ 0 ) |
| 139 |
137 138
|
eqnetrd |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ‘ 𝑀 ) ≠ 0 ) |
| 140 |
42 4 37 104 109 139
|
dgreq |
⊢ ( 𝑀 ∈ ℕ → ( deg ‘ 𝑃 ) = 𝑀 ) |
| 141 |
42 4 37 104 109
|
coeeq |
⊢ ( 𝑀 ∈ ℕ → ( coeff ‘ 𝑃 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ) |
| 142 |
42 140 141
|
3jca |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑃 ) = 𝑀 ∧ ( coeff ‘ 𝑃 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ) ) |