| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basel.n |
⊢ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) |
| 2 |
|
basel.p |
⊢ 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) · ( 𝑡 ↑ 𝑗 ) ) ) |
| 3 |
|
basel.t |
⊢ 𝑇 = ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
| 4 |
1
|
basellem1 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑛 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
| 5 |
|
tanrpcl |
⊢ ( ( ( 𝑛 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
| 7 |
|
2z |
⊢ 2 ∈ ℤ |
| 8 |
|
znegcl |
⊢ ( 2 ∈ ℤ → - 2 ∈ ℤ ) |
| 9 |
7 8
|
ax-mp |
⊢ - 2 ∈ ℤ |
| 10 |
|
rpexpcl |
⊢ ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℝ+ ∧ - 2 ∈ ℤ ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℝ+ ) |
| 11 |
6 9 10
|
sylancl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℝ+ ) |
| 12 |
11
|
rpcnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℂ ) |
| 13 |
1 2
|
basellem3 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( ( 𝑛 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = ( ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) ) |
| 14 |
4 13
|
syldan |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = ( ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) ) |
| 15 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℤ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑛 ∈ ℤ ) |
| 17 |
16
|
zred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑛 ∈ ℝ ) |
| 18 |
|
pire |
⊢ π ∈ ℝ |
| 19 |
|
remulcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝑛 · π ) ∈ ℝ ) |
| 20 |
17 18 19
|
sylancl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑛 · π ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑛 · π ) ∈ ℂ ) |
| 22 |
|
2nn |
⊢ 2 ∈ ℕ |
| 23 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 2 · 𝑀 ) ∈ ℕ ) |
| 24 |
22 23
|
mpan |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℕ ) |
| 25 |
24
|
peano2nnd |
⊢ ( 𝑀 ∈ ℕ → ( ( 2 · 𝑀 ) + 1 ) ∈ ℕ ) |
| 26 |
1 25
|
eqeltrid |
⊢ ( 𝑀 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℕ ) |
| 28 |
27
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℂ ) |
| 29 |
27
|
nnne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ≠ 0 ) |
| 30 |
21 28 29
|
divcan2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) = ( 𝑛 · π ) ) |
| 31 |
30
|
fveq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) = ( sin ‘ ( 𝑛 · π ) ) ) |
| 32 |
|
sinkpi |
⊢ ( 𝑛 ∈ ℤ → ( sin ‘ ( 𝑛 · π ) ) = 0 ) |
| 33 |
16 32
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( 𝑛 · π ) ) = 0 ) |
| 34 |
31 33
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) = 0 ) |
| 35 |
34
|
oveq1d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) = ( 0 / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) ) |
| 36 |
20 27
|
nndivred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑛 · π ) / 𝑁 ) ∈ ℝ ) |
| 37 |
36
|
resincld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℝ ) |
| 38 |
37
|
recnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℂ ) |
| 39 |
27
|
nnnn0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℕ0 ) |
| 40 |
38 39
|
expcld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ∈ ℂ ) |
| 41 |
|
sincosq1sgn |
⊢ ( ( ( 𝑛 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∧ 0 < ( cos ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ) ) |
| 42 |
4 41
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 0 < ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∧ 0 < ( cos ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ) ) |
| 43 |
42
|
simpld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 0 < ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ) |
| 44 |
43
|
gt0ne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ≠ 0 ) |
| 45 |
27
|
nnzd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 46 |
38 44 45
|
expne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ≠ 0 ) |
| 47 |
40 46
|
div0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 0 / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) = 0 ) |
| 48 |
14 35 47
|
3eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = 0 ) |
| 49 |
1 2
|
basellem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑃 ) = 𝑀 ∧ ( coeff ‘ 𝑃 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ) ) |
| 50 |
49
|
simp1d |
⊢ ( 𝑀 ∈ ℕ → 𝑃 ∈ ( Poly ‘ ℂ ) ) |
| 51 |
|
plyf |
⊢ ( 𝑃 ∈ ( Poly ‘ ℂ ) → 𝑃 : ℂ ⟶ ℂ ) |
| 52 |
|
ffn |
⊢ ( 𝑃 : ℂ ⟶ ℂ → 𝑃 Fn ℂ ) |
| 53 |
50 51 52
|
3syl |
⊢ ( 𝑀 ∈ ℕ → 𝑃 Fn ℂ ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑃 Fn ℂ ) |
| 55 |
|
fniniseg |
⊢ ( 𝑃 Fn ℂ → ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ( ◡ 𝑃 “ { 0 } ) ↔ ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℂ ∧ ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = 0 ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ( ◡ 𝑃 “ { 0 } ) ↔ ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℂ ∧ ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = 0 ) ) ) |
| 57 |
12 48 56
|
mpbir2and |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ( ◡ 𝑃 “ { 0 } ) ) |
| 58 |
57 3
|
fmptd |
⊢ ( 𝑀 ∈ ℕ → 𝑇 : ( 1 ... 𝑀 ) ⟶ ( ◡ 𝑃 “ { 0 } ) ) |
| 59 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑚 ) ) |
| 60 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 61 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑦 ) ) |
| 62 |
15
|
zred |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℝ ) |
| 63 |
62
|
ssriv |
⊢ ( 1 ... 𝑀 ) ⊆ ℝ |
| 64 |
11
|
rpred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℝ ) |
| 65 |
64 3
|
fmptd |
⊢ ( 𝑀 ∈ ℕ → 𝑇 : ( 1 ... 𝑀 ) ⟶ ℝ ) |
| 66 |
65
|
ffvelcdmda |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝑇 ‘ 𝑘 ) ∈ ℝ ) |
| 67 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑘 < 𝑚 ) |
| 68 |
63
|
sseli |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → 𝑘 ∈ ℝ ) |
| 69 |
68
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑘 ∈ ℝ ) |
| 70 |
63
|
sseli |
⊢ ( 𝑚 ∈ ( 1 ... 𝑀 ) → 𝑚 ∈ ℝ ) |
| 71 |
70
|
ad2antll |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑚 ∈ ℝ ) |
| 72 |
18
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → π ∈ ℝ ) |
| 73 |
|
pipos |
⊢ 0 < π |
| 74 |
73
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 0 < π ) |
| 75 |
|
ltmul1 |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ( π ∈ ℝ ∧ 0 < π ) ) → ( 𝑘 < 𝑚 ↔ ( 𝑘 · π ) < ( 𝑚 · π ) ) ) |
| 76 |
69 71 72 74 75
|
syl112anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑘 < 𝑚 ↔ ( 𝑘 · π ) < ( 𝑚 · π ) ) ) |
| 77 |
67 76
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑘 · π ) < ( 𝑚 · π ) ) |
| 78 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝑘 · π ) ∈ ℝ ) |
| 79 |
69 18 78
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑘 · π ) ∈ ℝ ) |
| 80 |
|
remulcl |
⊢ ( ( 𝑚 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝑚 · π ) ∈ ℝ ) |
| 81 |
71 18 80
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑚 · π ) ∈ ℝ ) |
| 82 |
26
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑁 ∈ ℕ ) |
| 83 |
82
|
nnred |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑁 ∈ ℝ ) |
| 84 |
82
|
nngt0d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 0 < 𝑁 ) |
| 85 |
|
ltdiv1 |
⊢ ( ( ( 𝑘 · π ) ∈ ℝ ∧ ( 𝑚 · π ) ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑘 · π ) < ( 𝑚 · π ) ↔ ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ) ) |
| 86 |
79 81 83 84 85
|
syl112anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑘 · π ) < ( 𝑚 · π ) ↔ ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ) ) |
| 87 |
77 86
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ) |
| 88 |
|
neghalfpirx |
⊢ - ( π / 2 ) ∈ ℝ* |
| 89 |
|
pirp |
⊢ π ∈ ℝ+ |
| 90 |
|
rphalfcl |
⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) |
| 91 |
|
rpge0 |
⊢ ( ( π / 2 ) ∈ ℝ+ → 0 ≤ ( π / 2 ) ) |
| 92 |
89 90 91
|
mp2b |
⊢ 0 ≤ ( π / 2 ) |
| 93 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 94 |
|
le0neg2 |
⊢ ( ( π / 2 ) ∈ ℝ → ( 0 ≤ ( π / 2 ) ↔ - ( π / 2 ) ≤ 0 ) ) |
| 95 |
93 94
|
ax-mp |
⊢ ( 0 ≤ ( π / 2 ) ↔ - ( π / 2 ) ≤ 0 ) |
| 96 |
92 95
|
mpbi |
⊢ - ( π / 2 ) ≤ 0 |
| 97 |
|
iooss1 |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ - ( π / 2 ) ≤ 0 ) → ( 0 (,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 98 |
88 96 97
|
mp2an |
⊢ ( 0 (,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 99 |
1
|
basellem1 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑘 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
| 100 |
99
|
ad2ant2r |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑘 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
| 101 |
98 100
|
sselid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑘 · π ) / 𝑁 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 102 |
1
|
basellem1 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑚 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
| 103 |
102
|
ad2ant2rl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑚 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
| 104 |
98 103
|
sselid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑚 · π ) / 𝑁 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 105 |
|
tanord |
⊢ ( ( ( ( 𝑘 · π ) / 𝑁 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ ( ( 𝑚 · π ) / 𝑁 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ↔ ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) ) |
| 106 |
101 104 105
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ↔ ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) ) |
| 107 |
87 106
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) |
| 108 |
|
tanrpcl |
⊢ ( ( ( 𝑘 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
| 109 |
100 108
|
syl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
| 110 |
|
tanrpcl |
⊢ ( ( ( 𝑚 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
| 111 |
103 110
|
syl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
| 112 |
|
rprege0 |
⊢ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ) ) |
| 113 |
|
rprege0 |
⊢ ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) ) |
| 114 |
|
lt2sq |
⊢ ( ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ) ∧ ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↔ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 115 |
112 113 114
|
syl2an |
⊢ ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ ∧ ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↔ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 116 |
109 111 115
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↔ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 117 |
107 116
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) |
| 118 |
|
rpexpcl |
⊢ ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ∈ ℝ+ ) |
| 119 |
109 7 118
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ∈ ℝ+ ) |
| 120 |
|
rpexpcl |
⊢ ( ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ∈ ℝ+ ) |
| 121 |
111 7 120
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ∈ ℝ+ ) |
| 122 |
119 121
|
ltrecd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ↔ ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) < ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) ) |
| 123 |
117 122
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) < ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 124 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · π ) = ( 𝑚 · π ) ) |
| 125 |
124
|
fvoveq1d |
⊢ ( 𝑛 = 𝑚 → ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) = ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) |
| 126 |
125
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) = ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
| 127 |
|
ovex |
⊢ ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ V |
| 128 |
126 3 127
|
fvmpt |
⊢ ( 𝑚 ∈ ( 1 ... 𝑀 ) → ( 𝑇 ‘ 𝑚 ) = ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
| 129 |
128
|
ad2antll |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑚 ) = ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
| 130 |
111
|
rpcnd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℂ ) |
| 131 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 132 |
|
expneg |
⊢ ( ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) = ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 133 |
130 131 132
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) = ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 134 |
129 133
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑚 ) = ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 135 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 · π ) = ( 𝑘 · π ) ) |
| 136 |
135
|
fvoveq1d |
⊢ ( 𝑛 = 𝑘 → ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) = ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ) |
| 137 |
136
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) = ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
| 138 |
|
ovex |
⊢ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ V |
| 139 |
137 3 138
|
fvmpt |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → ( 𝑇 ‘ 𝑘 ) = ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
| 140 |
139
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑘 ) = ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
| 141 |
109
|
rpcnd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℂ ) |
| 142 |
|
expneg |
⊢ ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) = ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 143 |
141 131 142
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) = ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 144 |
140 143
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑘 ) = ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
| 145 |
123 134 144
|
3brtr4d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑚 ) < ( 𝑇 ‘ 𝑘 ) ) |
| 146 |
145
|
an32s |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) ∧ 𝑘 < 𝑚 ) → ( 𝑇 ‘ 𝑚 ) < ( 𝑇 ‘ 𝑘 ) ) |
| 147 |
146
|
ex |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑘 < 𝑚 → ( 𝑇 ‘ 𝑚 ) < ( 𝑇 ‘ 𝑘 ) ) ) |
| 148 |
59 60 61 63 66 147
|
eqord2 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑥 = 𝑦 ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 149 |
148
|
biimprd |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 150 |
149
|
ralrimivva |
⊢ ( 𝑀 ∈ ℕ → ∀ 𝑥 ∈ ( 1 ... 𝑀 ) ∀ 𝑦 ∈ ( 1 ... 𝑀 ) ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 151 |
|
dff13 |
⊢ ( 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) ↔ ( 𝑇 : ( 1 ... 𝑀 ) ⟶ ( ◡ 𝑃 “ { 0 } ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝑀 ) ∀ 𝑦 ∈ ( 1 ... 𝑀 ) ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 152 |
58 150 151
|
sylanbrc |
⊢ ( 𝑀 ∈ ℕ → 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) ) |
| 153 |
49
|
simp2d |
⊢ ( 𝑀 ∈ ℕ → ( deg ‘ 𝑃 ) = 𝑀 ) |
| 154 |
|
nnne0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) |
| 155 |
153 154
|
eqnetrd |
⊢ ( 𝑀 ∈ ℕ → ( deg ‘ 𝑃 ) ≠ 0 ) |
| 156 |
|
fveq2 |
⊢ ( 𝑃 = 0𝑝 → ( deg ‘ 𝑃 ) = ( deg ‘ 0𝑝 ) ) |
| 157 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
| 158 |
156 157
|
eqtrdi |
⊢ ( 𝑃 = 0𝑝 → ( deg ‘ 𝑃 ) = 0 ) |
| 159 |
158
|
necon3i |
⊢ ( ( deg ‘ 𝑃 ) ≠ 0 → 𝑃 ≠ 0𝑝 ) |
| 160 |
155 159
|
syl |
⊢ ( 𝑀 ∈ ℕ → 𝑃 ≠ 0𝑝 ) |
| 161 |
|
eqid |
⊢ ( ◡ 𝑃 “ { 0 } ) = ( ◡ 𝑃 “ { 0 } ) |
| 162 |
161
|
fta1 |
⊢ ( ( 𝑃 ∈ ( Poly ‘ ℂ ) ∧ 𝑃 ≠ 0𝑝 ) → ( ( ◡ 𝑃 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( deg ‘ 𝑃 ) ) ) |
| 163 |
50 160 162
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( ( ◡ 𝑃 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( deg ‘ 𝑃 ) ) ) |
| 164 |
163
|
simpld |
⊢ ( 𝑀 ∈ ℕ → ( ◡ 𝑃 “ { 0 } ) ∈ Fin ) |
| 165 |
|
f1domg |
⊢ ( ( ◡ 𝑃 “ { 0 } ) ∈ Fin → ( 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) → ( 1 ... 𝑀 ) ≼ ( ◡ 𝑃 “ { 0 } ) ) ) |
| 166 |
164 152 165
|
sylc |
⊢ ( 𝑀 ∈ ℕ → ( 1 ... 𝑀 ) ≼ ( ◡ 𝑃 “ { 0 } ) ) |
| 167 |
163
|
simprd |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( deg ‘ 𝑃 ) ) |
| 168 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 169 |
|
hashfz1 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 170 |
168 169
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 171 |
153 170
|
eqtr4d |
⊢ ( 𝑀 ∈ ℕ → ( deg ‘ 𝑃 ) = ( ♯ ‘ ( 1 ... 𝑀 ) ) ) |
| 172 |
167 171
|
breqtrd |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( ♯ ‘ ( 1 ... 𝑀 ) ) ) |
| 173 |
|
fzfid |
⊢ ( 𝑀 ∈ ℕ → ( 1 ... 𝑀 ) ∈ Fin ) |
| 174 |
|
hashdom |
⊢ ( ( ( ◡ 𝑃 “ { 0 } ) ∈ Fin ∧ ( 1 ... 𝑀 ) ∈ Fin ) → ( ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( ♯ ‘ ( 1 ... 𝑀 ) ) ↔ ( ◡ 𝑃 “ { 0 } ) ≼ ( 1 ... 𝑀 ) ) ) |
| 175 |
164 173 174
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( ♯ ‘ ( 1 ... 𝑀 ) ) ↔ ( ◡ 𝑃 “ { 0 } ) ≼ ( 1 ... 𝑀 ) ) ) |
| 176 |
172 175
|
mpbid |
⊢ ( 𝑀 ∈ ℕ → ( ◡ 𝑃 “ { 0 } ) ≼ ( 1 ... 𝑀 ) ) |
| 177 |
|
sbth |
⊢ ( ( ( 1 ... 𝑀 ) ≼ ( ◡ 𝑃 “ { 0 } ) ∧ ( ◡ 𝑃 “ { 0 } ) ≼ ( 1 ... 𝑀 ) ) → ( 1 ... 𝑀 ) ≈ ( ◡ 𝑃 “ { 0 } ) ) |
| 178 |
166 176 177
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( 1 ... 𝑀 ) ≈ ( ◡ 𝑃 “ { 0 } ) ) |
| 179 |
|
f1finf1o |
⊢ ( ( ( 1 ... 𝑀 ) ≈ ( ◡ 𝑃 “ { 0 } ) ∧ ( ◡ 𝑃 “ { 0 } ) ∈ Fin ) → ( 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) ↔ 𝑇 : ( 1 ... 𝑀 ) –1-1-onto→ ( ◡ 𝑃 “ { 0 } ) ) ) |
| 180 |
178 164 179
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) ↔ 𝑇 : ( 1 ... 𝑀 ) –1-1-onto→ ( ◡ 𝑃 “ { 0 } ) ) ) |
| 181 |
152 180
|
mpbid |
⊢ ( 𝑀 ∈ ℕ → 𝑇 : ( 1 ... 𝑀 ) –1-1-onto→ ( ◡ 𝑃 “ { 0 } ) ) |