Step |
Hyp |
Ref |
Expression |
1 |
|
basel.n |
⊢ 𝑁 = ( ( 2 · 𝑀 ) + 1 ) |
2 |
|
basel.p |
⊢ 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀 − 𝑗 ) ) ) · ( 𝑡 ↑ 𝑗 ) ) ) |
3 |
|
basel.t |
⊢ 𝑇 = ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
4 |
1
|
basellem1 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑛 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
5 |
|
tanrpcl |
⊢ ( ( ( 𝑛 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
7 |
|
2z |
⊢ 2 ∈ ℤ |
8 |
|
znegcl |
⊢ ( 2 ∈ ℤ → - 2 ∈ ℤ ) |
9 |
7 8
|
ax-mp |
⊢ - 2 ∈ ℤ |
10 |
|
rpexpcl |
⊢ ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℝ+ ∧ - 2 ∈ ℤ ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℝ+ ) |
11 |
6 9 10
|
sylancl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℝ+ ) |
12 |
11
|
rpcnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℂ ) |
13 |
1 2
|
basellem3 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( ( 𝑛 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = ( ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) ) |
14 |
4 13
|
syldan |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = ( ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) ) |
15 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℤ ) |
16 |
15
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑛 ∈ ℤ ) |
17 |
16
|
zred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑛 ∈ ℝ ) |
18 |
|
pire |
⊢ π ∈ ℝ |
19 |
|
remulcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝑛 · π ) ∈ ℝ ) |
20 |
17 18 19
|
sylancl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑛 · π ) ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑛 · π ) ∈ ℂ ) |
22 |
|
2nn |
⊢ 2 ∈ ℕ |
23 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 2 · 𝑀 ) ∈ ℕ ) |
24 |
22 23
|
mpan |
⊢ ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℕ ) |
25 |
24
|
peano2nnd |
⊢ ( 𝑀 ∈ ℕ → ( ( 2 · 𝑀 ) + 1 ) ∈ ℕ ) |
26 |
1 25
|
eqeltrid |
⊢ ( 𝑀 ∈ ℕ → 𝑁 ∈ ℕ ) |
27 |
26
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℕ ) |
28 |
27
|
nncnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℂ ) |
29 |
27
|
nnne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ≠ 0 ) |
30 |
21 28 29
|
divcan2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) = ( 𝑛 · π ) ) |
31 |
30
|
fveq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) = ( sin ‘ ( 𝑛 · π ) ) ) |
32 |
|
sinkpi |
⊢ ( 𝑛 ∈ ℤ → ( sin ‘ ( 𝑛 · π ) ) = 0 ) |
33 |
16 32
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( 𝑛 · π ) ) = 0 ) |
34 |
31 33
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) = 0 ) |
35 |
34
|
oveq1d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( sin ‘ ( 𝑁 · ( ( 𝑛 · π ) / 𝑁 ) ) ) / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) = ( 0 / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) ) |
36 |
20 27
|
nndivred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑛 · π ) / 𝑁 ) ∈ ℝ ) |
37 |
36
|
resincld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℝ ) |
38 |
37
|
recnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∈ ℂ ) |
39 |
27
|
nnnn0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℕ0 ) |
40 |
38 39
|
expcld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ∈ ℂ ) |
41 |
|
sincosq1sgn |
⊢ ( ( ( 𝑛 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) → ( 0 < ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∧ 0 < ( cos ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ) ) |
42 |
4 41
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 0 < ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ∧ 0 < ( cos ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ) ) |
43 |
42
|
simpld |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 0 < ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ) |
44 |
43
|
gt0ne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ≠ 0 ) |
45 |
27
|
nnzd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑁 ∈ ℤ ) |
46 |
38 44 45
|
expne0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ≠ 0 ) |
47 |
40 46
|
div0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 0 / ( ( sin ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ 𝑁 ) ) = 0 ) |
48 |
14 35 47
|
3eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = 0 ) |
49 |
1 2
|
basellem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑃 ) = 𝑀 ∧ ( coeff ‘ 𝑃 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀 − 𝑛 ) ) ) ) ) ) |
50 |
49
|
simp1d |
⊢ ( 𝑀 ∈ ℕ → 𝑃 ∈ ( Poly ‘ ℂ ) ) |
51 |
|
plyf |
⊢ ( 𝑃 ∈ ( Poly ‘ ℂ ) → 𝑃 : ℂ ⟶ ℂ ) |
52 |
|
ffn |
⊢ ( 𝑃 : ℂ ⟶ ℂ → 𝑃 Fn ℂ ) |
53 |
50 51 52
|
3syl |
⊢ ( 𝑀 ∈ ℕ → 𝑃 Fn ℂ ) |
54 |
53
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → 𝑃 Fn ℂ ) |
55 |
|
fniniseg |
⊢ ( 𝑃 Fn ℂ → ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ( ◡ 𝑃 “ { 0 } ) ↔ ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℂ ∧ ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = 0 ) ) ) |
56 |
54 55
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ( ◡ 𝑃 “ { 0 } ) ↔ ( ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℂ ∧ ( 𝑃 ‘ ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ) = 0 ) ) ) |
57 |
12 48 56
|
mpbir2and |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ( ◡ 𝑃 “ { 0 } ) ) |
58 |
57 3
|
fmptd |
⊢ ( 𝑀 ∈ ℕ → 𝑇 : ( 1 ... 𝑀 ) ⟶ ( ◡ 𝑃 “ { 0 } ) ) |
59 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑚 ) ) |
60 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑥 ) ) |
61 |
|
fveq2 |
⊢ ( 𝑘 = 𝑦 → ( 𝑇 ‘ 𝑘 ) = ( 𝑇 ‘ 𝑦 ) ) |
62 |
15
|
zred |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℝ ) |
63 |
62
|
ssriv |
⊢ ( 1 ... 𝑀 ) ⊆ ℝ |
64 |
11
|
rpred |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ ℝ ) |
65 |
64 3
|
fmptd |
⊢ ( 𝑀 ∈ ℕ → 𝑇 : ( 1 ... 𝑀 ) ⟶ ℝ ) |
66 |
65
|
ffvelrnda |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( 𝑇 ‘ 𝑘 ) ∈ ℝ ) |
67 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑘 < 𝑚 ) |
68 |
63
|
sseli |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → 𝑘 ∈ ℝ ) |
69 |
68
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑘 ∈ ℝ ) |
70 |
63
|
sseli |
⊢ ( 𝑚 ∈ ( 1 ... 𝑀 ) → 𝑚 ∈ ℝ ) |
71 |
70
|
ad2antll |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑚 ∈ ℝ ) |
72 |
18
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → π ∈ ℝ ) |
73 |
|
pipos |
⊢ 0 < π |
74 |
73
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 0 < π ) |
75 |
|
ltmul1 |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ( π ∈ ℝ ∧ 0 < π ) ) → ( 𝑘 < 𝑚 ↔ ( 𝑘 · π ) < ( 𝑚 · π ) ) ) |
76 |
69 71 72 74 75
|
syl112anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑘 < 𝑚 ↔ ( 𝑘 · π ) < ( 𝑚 · π ) ) ) |
77 |
67 76
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑘 · π ) < ( 𝑚 · π ) ) |
78 |
|
remulcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝑘 · π ) ∈ ℝ ) |
79 |
69 18 78
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑘 · π ) ∈ ℝ ) |
80 |
|
remulcl |
⊢ ( ( 𝑚 ∈ ℝ ∧ π ∈ ℝ ) → ( 𝑚 · π ) ∈ ℝ ) |
81 |
71 18 80
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑚 · π ) ∈ ℝ ) |
82 |
26
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑁 ∈ ℕ ) |
83 |
82
|
nnred |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 𝑁 ∈ ℝ ) |
84 |
82
|
nngt0d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → 0 < 𝑁 ) |
85 |
|
ltdiv1 |
⊢ ( ( ( 𝑘 · π ) ∈ ℝ ∧ ( 𝑚 · π ) ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑘 · π ) < ( 𝑚 · π ) ↔ ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ) ) |
86 |
79 81 83 84 85
|
syl112anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑘 · π ) < ( 𝑚 · π ) ↔ ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ) ) |
87 |
77 86
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ) |
88 |
|
neghalfpirx |
⊢ - ( π / 2 ) ∈ ℝ* |
89 |
|
pirp |
⊢ π ∈ ℝ+ |
90 |
|
rphalfcl |
⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) |
91 |
|
rpge0 |
⊢ ( ( π / 2 ) ∈ ℝ+ → 0 ≤ ( π / 2 ) ) |
92 |
89 90 91
|
mp2b |
⊢ 0 ≤ ( π / 2 ) |
93 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
94 |
|
le0neg2 |
⊢ ( ( π / 2 ) ∈ ℝ → ( 0 ≤ ( π / 2 ) ↔ - ( π / 2 ) ≤ 0 ) ) |
95 |
93 94
|
ax-mp |
⊢ ( 0 ≤ ( π / 2 ) ↔ - ( π / 2 ) ≤ 0 ) |
96 |
92 95
|
mpbi |
⊢ - ( π / 2 ) ≤ 0 |
97 |
|
iooss1 |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ - ( π / 2 ) ≤ 0 ) → ( 0 (,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
98 |
88 96 97
|
mp2an |
⊢ ( 0 (,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) |
99 |
1
|
basellem1 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑘 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
100 |
99
|
ad2ant2r |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑘 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
101 |
98 100
|
sselid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑘 · π ) / 𝑁 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
102 |
1
|
basellem1 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑚 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
103 |
102
|
ad2ant2rl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑚 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
104 |
98 103
|
sselid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑚 · π ) / 𝑁 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
105 |
|
tanord |
⊢ ( ( ( ( 𝑘 · π ) / 𝑁 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∧ ( ( 𝑚 · π ) / 𝑁 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ↔ ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) ) |
106 |
101 104 105
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( 𝑘 · π ) / 𝑁 ) < ( ( 𝑚 · π ) / 𝑁 ) ↔ ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) ) |
107 |
87 106
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) |
108 |
|
tanrpcl |
⊢ ( ( ( 𝑘 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
109 |
100 108
|
syl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
110 |
|
tanrpcl |
⊢ ( ( ( 𝑚 · π ) / 𝑁 ) ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
111 |
103 110
|
syl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ ) |
112 |
|
rprege0 |
⊢ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ) ) |
113 |
|
rprege0 |
⊢ ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) ) |
114 |
|
lt2sq |
⊢ ( ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ) ∧ ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ ∧ 0 ≤ ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↔ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
115 |
112 113 114
|
syl2an |
⊢ ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ ∧ ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↔ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
116 |
109 111 115
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) < ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↔ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
117 |
107 116
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) |
118 |
|
rpexpcl |
⊢ ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ∈ ℝ+ ) |
119 |
109 7 118
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ∈ ℝ+ ) |
120 |
|
rpexpcl |
⊢ ( ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ∈ ℝ+ ) |
121 |
111 7 120
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ∈ ℝ+ ) |
122 |
119 121
|
ltrecd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) < ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ↔ ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) < ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) ) |
123 |
117 122
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) < ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
124 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 · π ) = ( 𝑚 · π ) ) |
125 |
124
|
fvoveq1d |
⊢ ( 𝑛 = 𝑚 → ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) = ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ) |
126 |
125
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) = ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
127 |
|
ovex |
⊢ ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ V |
128 |
126 3 127
|
fvmpt |
⊢ ( 𝑚 ∈ ( 1 ... 𝑀 ) → ( 𝑇 ‘ 𝑚 ) = ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
129 |
128
|
ad2antll |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑚 ) = ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
130 |
111
|
rpcnd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℂ ) |
131 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
132 |
|
expneg |
⊢ ( ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) = ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
133 |
130 131 132
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ - 2 ) = ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
134 |
129 133
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑚 ) = ( 1 / ( ( tan ‘ ( ( 𝑚 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
135 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 · π ) = ( 𝑘 · π ) ) |
136 |
135
|
fvoveq1d |
⊢ ( 𝑛 = 𝑘 → ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) = ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ) |
137 |
136
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( tan ‘ ( ( 𝑛 · π ) / 𝑁 ) ) ↑ - 2 ) = ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
138 |
|
ovex |
⊢ ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) ∈ V |
139 |
137 3 138
|
fvmpt |
⊢ ( 𝑘 ∈ ( 1 ... 𝑀 ) → ( 𝑇 ‘ 𝑘 ) = ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
140 |
139
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑘 ) = ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) ) |
141 |
109
|
rpcnd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℂ ) |
142 |
|
expneg |
⊢ ( ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) = ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
143 |
141 131 142
|
sylancl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ - 2 ) = ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
144 |
140 143
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑘 ) = ( 1 / ( ( tan ‘ ( ( 𝑘 · π ) / 𝑁 ) ) ↑ 2 ) ) ) |
145 |
123 134 144
|
3brtr4d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑘 < 𝑚 ) ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑇 ‘ 𝑚 ) < ( 𝑇 ‘ 𝑘 ) ) |
146 |
145
|
an32s |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) ∧ 𝑘 < 𝑚 ) → ( 𝑇 ‘ 𝑚 ) < ( 𝑇 ‘ 𝑘 ) ) |
147 |
146
|
ex |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑘 ∈ ( 1 ... 𝑀 ) ∧ 𝑚 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑘 < 𝑚 → ( 𝑇 ‘ 𝑚 ) < ( 𝑇 ‘ 𝑘 ) ) ) |
148 |
59 60 61 63 66 147
|
eqord2 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑥 = 𝑦 ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
149 |
148
|
biimprd |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
150 |
149
|
ralrimivva |
⊢ ( 𝑀 ∈ ℕ → ∀ 𝑥 ∈ ( 1 ... 𝑀 ) ∀ 𝑦 ∈ ( 1 ... 𝑀 ) ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
151 |
|
dff13 |
⊢ ( 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) ↔ ( 𝑇 : ( 1 ... 𝑀 ) ⟶ ( ◡ 𝑃 “ { 0 } ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝑀 ) ∀ 𝑦 ∈ ( 1 ... 𝑀 ) ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
152 |
58 150 151
|
sylanbrc |
⊢ ( 𝑀 ∈ ℕ → 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) ) |
153 |
49
|
simp2d |
⊢ ( 𝑀 ∈ ℕ → ( deg ‘ 𝑃 ) = 𝑀 ) |
154 |
|
nnne0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ≠ 0 ) |
155 |
153 154
|
eqnetrd |
⊢ ( 𝑀 ∈ ℕ → ( deg ‘ 𝑃 ) ≠ 0 ) |
156 |
|
fveq2 |
⊢ ( 𝑃 = 0𝑝 → ( deg ‘ 𝑃 ) = ( deg ‘ 0𝑝 ) ) |
157 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
158 |
156 157
|
eqtrdi |
⊢ ( 𝑃 = 0𝑝 → ( deg ‘ 𝑃 ) = 0 ) |
159 |
158
|
necon3i |
⊢ ( ( deg ‘ 𝑃 ) ≠ 0 → 𝑃 ≠ 0𝑝 ) |
160 |
155 159
|
syl |
⊢ ( 𝑀 ∈ ℕ → 𝑃 ≠ 0𝑝 ) |
161 |
|
eqid |
⊢ ( ◡ 𝑃 “ { 0 } ) = ( ◡ 𝑃 “ { 0 } ) |
162 |
161
|
fta1 |
⊢ ( ( 𝑃 ∈ ( Poly ‘ ℂ ) ∧ 𝑃 ≠ 0𝑝 ) → ( ( ◡ 𝑃 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( deg ‘ 𝑃 ) ) ) |
163 |
50 160 162
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( ( ◡ 𝑃 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( deg ‘ 𝑃 ) ) ) |
164 |
163
|
simpld |
⊢ ( 𝑀 ∈ ℕ → ( ◡ 𝑃 “ { 0 } ) ∈ Fin ) |
165 |
|
f1domg |
⊢ ( ( ◡ 𝑃 “ { 0 } ) ∈ Fin → ( 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) → ( 1 ... 𝑀 ) ≼ ( ◡ 𝑃 “ { 0 } ) ) ) |
166 |
164 152 165
|
sylc |
⊢ ( 𝑀 ∈ ℕ → ( 1 ... 𝑀 ) ≼ ( ◡ 𝑃 “ { 0 } ) ) |
167 |
163
|
simprd |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( deg ‘ 𝑃 ) ) |
168 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
169 |
|
hashfz1 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
170 |
168 169
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
171 |
153 170
|
eqtr4d |
⊢ ( 𝑀 ∈ ℕ → ( deg ‘ 𝑃 ) = ( ♯ ‘ ( 1 ... 𝑀 ) ) ) |
172 |
167 171
|
breqtrd |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( ♯ ‘ ( 1 ... 𝑀 ) ) ) |
173 |
|
fzfid |
⊢ ( 𝑀 ∈ ℕ → ( 1 ... 𝑀 ) ∈ Fin ) |
174 |
|
hashdom |
⊢ ( ( ( ◡ 𝑃 “ { 0 } ) ∈ Fin ∧ ( 1 ... 𝑀 ) ∈ Fin ) → ( ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( ♯ ‘ ( 1 ... 𝑀 ) ) ↔ ( ◡ 𝑃 “ { 0 } ) ≼ ( 1 ... 𝑀 ) ) ) |
175 |
164 173 174
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( ( ♯ ‘ ( ◡ 𝑃 “ { 0 } ) ) ≤ ( ♯ ‘ ( 1 ... 𝑀 ) ) ↔ ( ◡ 𝑃 “ { 0 } ) ≼ ( 1 ... 𝑀 ) ) ) |
176 |
172 175
|
mpbid |
⊢ ( 𝑀 ∈ ℕ → ( ◡ 𝑃 “ { 0 } ) ≼ ( 1 ... 𝑀 ) ) |
177 |
|
sbth |
⊢ ( ( ( 1 ... 𝑀 ) ≼ ( ◡ 𝑃 “ { 0 } ) ∧ ( ◡ 𝑃 “ { 0 } ) ≼ ( 1 ... 𝑀 ) ) → ( 1 ... 𝑀 ) ≈ ( ◡ 𝑃 “ { 0 } ) ) |
178 |
166 176 177
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( 1 ... 𝑀 ) ≈ ( ◡ 𝑃 “ { 0 } ) ) |
179 |
|
f1finf1o |
⊢ ( ( ( 1 ... 𝑀 ) ≈ ( ◡ 𝑃 “ { 0 } ) ∧ ( ◡ 𝑃 “ { 0 } ) ∈ Fin ) → ( 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) ↔ 𝑇 : ( 1 ... 𝑀 ) –1-1-onto→ ( ◡ 𝑃 “ { 0 } ) ) ) |
180 |
178 164 179
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( 𝑇 : ( 1 ... 𝑀 ) –1-1→ ( ◡ 𝑃 “ { 0 } ) ↔ 𝑇 : ( 1 ... 𝑀 ) –1-1-onto→ ( ◡ 𝑃 “ { 0 } ) ) ) |
181 |
152 180
|
mpbid |
⊢ ( 𝑀 ∈ ℕ → 𝑇 : ( 1 ... 𝑀 ) –1-1-onto→ ( ◡ 𝑃 “ { 0 } ) ) |