| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basel.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 3 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 5 |
|
divcnv |
⊢ ( 1 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) |
| 6 |
4 5
|
mp1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ⇝ 0 ) |
| 7 |
|
nnex |
⊢ ℕ ∈ V |
| 8 |
7
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ V |
| 9 |
1 8
|
eqeltri |
⊢ 𝐺 ∈ V |
| 10 |
9
|
a1i |
⊢ ( ⊤ → 𝐺 ∈ V ) |
| 11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) |
| 13 |
|
ovex |
⊢ ( 1 / 𝑘 ) ∈ V |
| 14 |
11 12 13
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 16 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
| 17 |
16
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 18 |
15 17
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 19 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 22 |
|
ovex |
⊢ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ V |
| 23 |
21 1 22
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 24 |
23
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 25 |
|
2nn |
⊢ 2 ∈ ℕ |
| 26 |
25
|
a1i |
⊢ ( ⊤ → 2 ∈ ℕ ) |
| 27 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
| 28 |
26 27
|
sylan |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
| 29 |
28
|
peano2nnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 30 |
29
|
nnrecred |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ ) |
| 31 |
24 30
|
eqeltrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 32 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 33 |
32
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 34 |
28
|
nnred |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℝ ) |
| 35 |
29
|
nnred |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ) |
| 36 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 37 |
36
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 38 |
|
nn0addge1 |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ≤ ( 𝑘 + 𝑘 ) ) |
| 39 |
33 37 38
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( 𝑘 + 𝑘 ) ) |
| 40 |
33
|
recnd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 41 |
40
|
2timesd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) = ( 𝑘 + 𝑘 ) ) |
| 42 |
39 41
|
breqtrrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( 2 · 𝑘 ) ) |
| 43 |
34
|
lep1d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
| 44 |
33 34 35 42 43
|
letrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
| 45 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
| 46 |
45
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 < 𝑘 ) |
| 47 |
29
|
nngt0d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 < ( ( 2 · 𝑘 ) + 1 ) ) |
| 48 |
|
lerec |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ∧ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ ∧ 0 < ( ( 2 · 𝑘 ) + 1 ) ) ) → ( 𝑘 ≤ ( ( 2 · 𝑘 ) + 1 ) ↔ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
| 49 |
33 46 35 47 48
|
syl22anc |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ≤ ( ( 2 · 𝑘 ) + 1 ) ↔ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
| 50 |
44 49
|
mpbid |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ≤ ( 1 / 𝑘 ) ) |
| 51 |
50 24 15
|
3brtr4d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) ‘ 𝑘 ) ) |
| 52 |
29
|
nnrpd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℝ+ ) |
| 53 |
52
|
rpreccld |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ+ ) |
| 54 |
53
|
rpge0d |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 55 |
54 24
|
breqtrrd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 56 |
2 3 6 10 18 31 51 55
|
climsqz2 |
⊢ ( ⊤ → 𝐺 ⇝ 0 ) |
| 57 |
56
|
mptru |
⊢ 𝐺 ⇝ 0 |