Metamath Proof Explorer


Theorem basellem7

Description: Lemma for basel . The function 1 + A x. G for any fixed A goes to 1 . (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses basel.g 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) )
basellem7.2 𝐴 ∈ ℂ
Assertion basellem7 ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ⇝ 1

Proof

Step Hyp Ref Expression
1 basel.g 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) )
2 basellem7.2 𝐴 ∈ ℂ
3 nnuz ℕ = ( ℤ ‘ 1 )
4 1zzd ( ⊤ → 1 ∈ ℤ )
5 ax-1cn 1 ∈ ℂ
6 3 eqimss2i ( ℤ ‘ 1 ) ⊆ ℕ
7 nnex ℕ ∈ V
8 6 7 climconst2 ( ( 1 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 1 } ) ⇝ 1 )
9 5 4 8 sylancr ( ⊤ → ( ℕ × { 1 } ) ⇝ 1 )
10 ovexd ( ⊤ → ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ∈ V )
11 6 7 climconst2 ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 𝐴 } ) ⇝ 𝐴 )
12 2 4 11 sylancr ( ⊤ → ( ℕ × { 𝐴 } ) ⇝ 𝐴 )
13 ovexd ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ∈ V )
14 1 basellem6 𝐺 ⇝ 0
15 14 a1i ( ⊤ → 𝐺 ⇝ 0 )
16 2 elexi 𝐴 ∈ V
17 16 fconst ( ℕ × { 𝐴 } ) : ℕ ⟶ { 𝐴 }
18 2 a1i ( ⊤ → 𝐴 ∈ ℂ )
19 18 snssd ( ⊤ → { 𝐴 } ⊆ ℂ )
20 fss ( ( ( ℕ × { 𝐴 } ) : ℕ ⟶ { 𝐴 } ∧ { 𝐴 } ⊆ ℂ ) → ( ℕ × { 𝐴 } ) : ℕ ⟶ ℂ )
21 17 19 20 sylancr ( ⊤ → ( ℕ × { 𝐴 } ) : ℕ ⟶ ℂ )
22 21 ffvelrnda ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ 𝑘 ) ∈ ℂ )
23 2nn 2 ∈ ℕ
24 23 a1i ( ⊤ → 2 ∈ ℕ )
25 nnmulcl ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) ∈ ℕ )
26 24 25 sylan ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) ∈ ℕ )
27 26 peano2nnd ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ )
28 27 nnrecred ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ )
29 28 recnd ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ )
30 29 1 fmptd ( ⊤ → 𝐺 : ℕ ⟶ ℂ )
31 30 ffvelrnda ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) ∈ ℂ )
32 21 ffnd ( ⊤ → ( ℕ × { 𝐴 } ) Fn ℕ )
33 30 ffnd ( ⊤ → 𝐺 Fn ℕ )
34 7 a1i ( ⊤ → ℕ ∈ V )
35 inidm ( ℕ ∩ ℕ ) = ℕ
36 eqidd ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ 𝑘 ) = ( ( ℕ × { 𝐴 } ) ‘ 𝑘 ) )
37 eqidd ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺𝑘 ) = ( 𝐺𝑘 ) )
38 32 33 34 34 35 36 37 ofval ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) = ( ( ( ℕ × { 𝐴 } ) ‘ 𝑘 ) · ( 𝐺𝑘 ) ) )
39 3 4 12 13 15 22 31 38 climmul ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ⇝ ( 𝐴 · 0 ) )
40 2 mul01i ( 𝐴 · 0 ) = 0
41 39 40 breqtrdi ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ⇝ 0 )
42 1ex 1 ∈ V
43 42 fconst ( ℕ × { 1 } ) : ℕ ⟶ { 1 }
44 5 a1i ( ⊤ → 1 ∈ ℂ )
45 44 snssd ( ⊤ → { 1 } ⊆ ℂ )
46 fss ( ( ( ℕ × { 1 } ) : ℕ ⟶ { 1 } ∧ { 1 } ⊆ ℂ ) → ( ℕ × { 1 } ) : ℕ ⟶ ℂ )
47 43 45 46 sylancr ( ⊤ → ( ℕ × { 1 } ) : ℕ ⟶ ℂ )
48 47 ffvelrnda ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) ∈ ℂ )
49 mulcl ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
50 49 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ )
51 50 21 30 34 34 35 off ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) : ℕ ⟶ ℂ )
52 51 ffvelrnda ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) ∈ ℂ )
53 43 a1i ( ⊤ → ( ℕ × { 1 } ) : ℕ ⟶ { 1 } )
54 53 ffnd ( ⊤ → ( ℕ × { 1 } ) Fn ℕ )
55 51 ffnd ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) Fn ℕ )
56 eqidd ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) = ( ( ℕ × { 1 } ) ‘ 𝑘 ) )
57 eqidd ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) = ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) )
58 54 55 34 34 35 56 57 ofval ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ‘ 𝑘 ) = ( ( ( ℕ × { 1 } ) ‘ 𝑘 ) + ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) ) )
59 3 4 9 10 41 48 52 58 climadd ( ⊤ → ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ⇝ ( 1 + 0 ) )
60 59 mptru ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ⇝ ( 1 + 0 )
61 1p0e1 ( 1 + 0 ) = 1
62 60 61 breqtri ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ⇝ 1