Step |
Hyp |
Ref |
Expression |
1 |
|
basel.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
2 |
|
basellem7.2 |
⊢ 𝐴 ∈ ℂ |
3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
4 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
6 |
3
|
eqimss2i |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℕ |
7 |
|
nnex |
⊢ ℕ ∈ V |
8 |
6 7
|
climconst2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 1 } ) ⇝ 1 ) |
9 |
5 4 8
|
sylancr |
⊢ ( ⊤ → ( ℕ × { 1 } ) ⇝ 1 ) |
10 |
|
ovexd |
⊢ ( ⊤ → ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ∈ V ) |
11 |
6 7
|
climconst2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 𝐴 } ) ⇝ 𝐴 ) |
12 |
2 4 11
|
sylancr |
⊢ ( ⊤ → ( ℕ × { 𝐴 } ) ⇝ 𝐴 ) |
13 |
|
ovexd |
⊢ ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ∈ V ) |
14 |
1
|
basellem6 |
⊢ 𝐺 ⇝ 0 |
15 |
14
|
a1i |
⊢ ( ⊤ → 𝐺 ⇝ 0 ) |
16 |
2
|
elexi |
⊢ 𝐴 ∈ V |
17 |
16
|
fconst |
⊢ ( ℕ × { 𝐴 } ) : ℕ ⟶ { 𝐴 } |
18 |
2
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ ℂ ) |
19 |
18
|
snssd |
⊢ ( ⊤ → { 𝐴 } ⊆ ℂ ) |
20 |
|
fss |
⊢ ( ( ( ℕ × { 𝐴 } ) : ℕ ⟶ { 𝐴 } ∧ { 𝐴 } ⊆ ℂ ) → ( ℕ × { 𝐴 } ) : ℕ ⟶ ℂ ) |
21 |
17 19 20
|
sylancr |
⊢ ( ⊤ → ( ℕ × { 𝐴 } ) : ℕ ⟶ ℂ ) |
22 |
21
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ 𝑘 ) ∈ ℂ ) |
23 |
|
2nn |
⊢ 2 ∈ ℕ |
24 |
23
|
a1i |
⊢ ( ⊤ → 2 ∈ ℕ ) |
25 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) ∈ ℕ ) |
26 |
24 25
|
sylan |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) ∈ ℕ ) |
27 |
26
|
peano2nnd |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
28 |
27
|
nnrecred |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
30 |
29 1
|
fmptd |
⊢ ( ⊤ → 𝐺 : ℕ ⟶ ℂ ) |
31 |
30
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
32 |
21
|
ffnd |
⊢ ( ⊤ → ( ℕ × { 𝐴 } ) Fn ℕ ) |
33 |
30
|
ffnd |
⊢ ( ⊤ → 𝐺 Fn ℕ ) |
34 |
7
|
a1i |
⊢ ( ⊤ → ℕ ∈ V ) |
35 |
|
inidm |
⊢ ( ℕ ∩ ℕ ) = ℕ |
36 |
|
eqidd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ 𝑘 ) = ( ( ℕ × { 𝐴 } ) ‘ 𝑘 ) ) |
37 |
|
eqidd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
38 |
32 33 34 34 35 36 37
|
ofval |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) = ( ( ( ℕ × { 𝐴 } ) ‘ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) |
39 |
3 4 12 13 15 22 31 38
|
climmul |
⊢ ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ⇝ ( 𝐴 · 0 ) ) |
40 |
2
|
mul01i |
⊢ ( 𝐴 · 0 ) = 0 |
41 |
39 40
|
breqtrdi |
⊢ ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ⇝ 0 ) |
42 |
|
1ex |
⊢ 1 ∈ V |
43 |
42
|
fconst |
⊢ ( ℕ × { 1 } ) : ℕ ⟶ { 1 } |
44 |
5
|
a1i |
⊢ ( ⊤ → 1 ∈ ℂ ) |
45 |
44
|
snssd |
⊢ ( ⊤ → { 1 } ⊆ ℂ ) |
46 |
|
fss |
⊢ ( ( ( ℕ × { 1 } ) : ℕ ⟶ { 1 } ∧ { 1 } ⊆ ℂ ) → ( ℕ × { 1 } ) : ℕ ⟶ ℂ ) |
47 |
43 45 46
|
sylancr |
⊢ ( ⊤ → ( ℕ × { 1 } ) : ℕ ⟶ ℂ ) |
48 |
47
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) ∈ ℂ ) |
49 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
50 |
49
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
51 |
50 21 30 34 34 35
|
off |
⊢ ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) : ℕ ⟶ ℂ ) |
52 |
51
|
ffvelrnda |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) ∈ ℂ ) |
53 |
43
|
a1i |
⊢ ( ⊤ → ( ℕ × { 1 } ) : ℕ ⟶ { 1 } ) |
54 |
53
|
ffnd |
⊢ ( ⊤ → ( ℕ × { 1 } ) Fn ℕ ) |
55 |
51
|
ffnd |
⊢ ( ⊤ → ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) Fn ℕ ) |
56 |
|
eqidd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 1 } ) ‘ 𝑘 ) = ( ( ℕ × { 1 } ) ‘ 𝑘 ) ) |
57 |
|
eqidd |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) = ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) ) |
58 |
54 55 34 34 35 56 57
|
ofval |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ‘ 𝑘 ) = ( ( ( ℕ × { 1 } ) ‘ 𝑘 ) + ( ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ‘ 𝑘 ) ) ) |
59 |
3 4 9 10 41 48 52 58
|
climadd |
⊢ ( ⊤ → ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ⇝ ( 1 + 0 ) ) |
60 |
59
|
mptru |
⊢ ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ⇝ ( 1 + 0 ) |
61 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
62 |
60 61
|
breqtri |
⊢ ( ( ℕ × { 1 } ) ∘f + ( ( ℕ × { 𝐴 } ) ∘f · 𝐺 ) ) ⇝ 1 |