Metamath Proof Explorer


Theorem basgen

Description: Given a topology J , show that a subset B satisfying the third antecedent is a basis for it. Lemma 2.3 of Munkres p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006) (Revised by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion basgen ( ( 𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 tgss ( ( 𝐽 ∈ Top ∧ 𝐵𝐽 ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐽 ) )
2 1 3adant3 ( ( 𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) ⊆ ( topGen ‘ 𝐽 ) )
3 tgtop ( 𝐽 ∈ Top → ( topGen ‘ 𝐽 ) = 𝐽 )
4 3 3ad2ant1 ( ( 𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐽 ) = 𝐽 )
5 2 4 sseqtrd ( ( 𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) ⊆ 𝐽 )
6 simp3 ( ( 𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → 𝐽 ⊆ ( topGen ‘ 𝐵 ) )
7 5 6 eqssd ( ( 𝐽 ∈ Top ∧ 𝐵𝐽𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) = 𝐽 )