| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isbasis2g |
⊢ ( 𝐵 ∈ TopBases → ( 𝐵 ∈ TopBases ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) ) |
| 2 |
1
|
ibi |
⊢ ( 𝐵 ∈ TopBases → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) |
| 3 |
|
ineq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) ) |
| 4 |
|
sseq2 |
⊢ ( ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) → ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ↔ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) |
| 5 |
4
|
anbi2d |
⊢ ( ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) ) |
| 6 |
5
|
rexbidv |
⊢ ( ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) ) |
| 7 |
6
|
raleqbi1dv |
⊢ ( ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) → ( ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) ) |
| 8 |
3 7
|
syl |
⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) ) |
| 9 |
|
ineq2 |
⊢ ( 𝑧 = 𝐷 → ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) ) |
| 10 |
|
sseq2 |
⊢ ( ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) → ( 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ↔ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) |
| 11 |
10
|
anbi2d |
⊢ ( ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 12 |
11
|
rexbidv |
⊢ ( ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 13 |
12
|
raleqbi1dv |
⊢ ( ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) → ( ∀ 𝑤 ∈ ( 𝐶 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶 ∩ 𝐷 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 14 |
9 13
|
syl |
⊢ ( 𝑧 = 𝐷 → ( ∀ 𝑤 ∈ ( 𝐶 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶 ∩ 𝐷 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 15 |
8 14
|
rspc2v |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) → ∀ 𝑤 ∈ ( 𝐶 ∩ 𝐷 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 16 |
|
eleq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) |
| 17 |
16
|
anbi1d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ↔ ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑤 = 𝐴 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 19 |
18
|
rspccv |
⊢ ( ∀ 𝑤 ∈ ( 𝐶 ∩ 𝐷 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) → ( 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 20 |
15 19
|
syl6com |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) → ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) ) |
| 21 |
2 20
|
syl |
⊢ ( 𝐵 ∈ TopBases → ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) ) |
| 22 |
21
|
expd |
⊢ ( 𝐵 ∈ TopBases → ( 𝐶 ∈ 𝐵 → ( 𝐷 ∈ 𝐵 → ( 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) ) ) |
| 23 |
22
|
imp43 |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝐷 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) |