Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑥 ∈ 𝑃 → 𝑥 ∈ 𝑃 ) |
2 |
|
pwidg |
⊢ ( 𝑥 ∈ 𝑃 → 𝑥 ∈ 𝒫 𝑥 ) |
3 |
1 2
|
elind |
⊢ ( 𝑥 ∈ 𝑃 → 𝑥 ∈ ( 𝑃 ∩ 𝒫 𝑥 ) ) |
4 |
|
elssuni |
⊢ ( 𝑥 ∈ ( 𝑃 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝑃 ∩ 𝒫 𝑥 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ 𝑃 → 𝑥 ⊆ ∪ ( 𝑃 ∩ 𝒫 𝑥 ) ) |
6 |
|
inidm |
⊢ ( 𝑥 ∩ 𝑥 ) = 𝑥 |
7 |
|
ineq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) ) |
8 |
6 7
|
eqtr3id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = ( 𝑥 ∩ 𝑦 ) ) |
9 |
8
|
pweqd |
⊢ ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
10 |
9
|
ineq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∩ 𝒫 𝑥 ) = ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
11 |
10
|
unieqd |
⊢ ( 𝑥 = 𝑦 → ∪ ( 𝑃 ∩ 𝒫 𝑥 ) = ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
12 |
8 11
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ∪ ( 𝑃 ∩ 𝒫 𝑥 ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
13 |
5 12
|
syl5ibcom |
⊢ ( 𝑥 ∈ 𝑃 → ( 𝑥 = 𝑦 → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
14 |
|
0ss |
⊢ ∅ ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
15 |
|
sseq1 |
⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∅ ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
16 |
14 15
|
mpbiri |
⊢ ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
17 |
16
|
a1i |
⊢ ( 𝑥 ∈ 𝑃 → ( ( 𝑥 ∩ 𝑦 ) = ∅ → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
18 |
13 17
|
jaod |
⊢ ( 𝑥 ∈ 𝑃 → ( ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
19 |
18
|
ralimdv |
⊢ ( 𝑥 ∈ 𝑃 → ( ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
20 |
19
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
22 |
|
isbasisg |
⊢ ( 𝑃 ∈ 𝑉 → ( 𝑃 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → ( 𝑃 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑃 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
24 |
21 23
|
mpbird |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) → 𝑃 ∈ TopBases ) |