Metamath Proof Explorer


Theorem baspartn

Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion baspartn ( ( 𝑃𝑉 ∧ ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) ) → 𝑃 ∈ TopBases )

Proof

Step Hyp Ref Expression
1 id ( 𝑥𝑃𝑥𝑃 )
2 pwidg ( 𝑥𝑃𝑥 ∈ 𝒫 𝑥 )
3 1 2 elind ( 𝑥𝑃𝑥 ∈ ( 𝑃 ∩ 𝒫 𝑥 ) )
4 elssuni ( 𝑥 ∈ ( 𝑃 ∩ 𝒫 𝑥 ) → 𝑥 ( 𝑃 ∩ 𝒫 𝑥 ) )
5 3 4 syl ( 𝑥𝑃𝑥 ( 𝑃 ∩ 𝒫 𝑥 ) )
6 inidm ( 𝑥𝑥 ) = 𝑥
7 ineq2 ( 𝑥 = 𝑦 → ( 𝑥𝑥 ) = ( 𝑥𝑦 ) )
8 6 7 eqtr3id ( 𝑥 = 𝑦𝑥 = ( 𝑥𝑦 ) )
9 8 pweqd ( 𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 ( 𝑥𝑦 ) )
10 9 ineq2d ( 𝑥 = 𝑦 → ( 𝑃 ∩ 𝒫 𝑥 ) = ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) )
11 10 unieqd ( 𝑥 = 𝑦 ( 𝑃 ∩ 𝒫 𝑥 ) = ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) )
12 8 11 sseq12d ( 𝑥 = 𝑦 → ( 𝑥 ( 𝑃 ∩ 𝒫 𝑥 ) ↔ ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
13 5 12 syl5ibcom ( 𝑥𝑃 → ( 𝑥 = 𝑦 → ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
14 0ss ∅ ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) )
15 sseq1 ( ( 𝑥𝑦 ) = ∅ → ( ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ↔ ∅ ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
16 14 15 mpbiri ( ( 𝑥𝑦 ) = ∅ → ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) )
17 16 a1i ( 𝑥𝑃 → ( ( 𝑥𝑦 ) = ∅ → ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
18 13 17 jaod ( 𝑥𝑃 → ( ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) → ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
19 18 ralimdv ( 𝑥𝑃 → ( ∀ 𝑦𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) → ∀ 𝑦𝑃 ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
20 19 ralimia ( ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) → ∀ 𝑥𝑃𝑦𝑃 ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) )
21 20 adantl ( ( 𝑃𝑉 ∧ ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) ) → ∀ 𝑥𝑃𝑦𝑃 ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) )
22 isbasisg ( 𝑃𝑉 → ( 𝑃 ∈ TopBases ↔ ∀ 𝑥𝑃𝑦𝑃 ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
23 22 adantr ( ( 𝑃𝑉 ∧ ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) ) → ( 𝑃 ∈ TopBases ↔ ∀ 𝑥𝑃𝑦𝑃 ( 𝑥𝑦 ) ⊆ ( 𝑃 ∩ 𝒫 ( 𝑥𝑦 ) ) ) )
24 21 23 mpbird ( ( 𝑃𝑉 ∧ ∀ 𝑥𝑃𝑦𝑃 ( 𝑥 = 𝑦 ∨ ( 𝑥𝑦 ) = ∅ ) ) → 𝑃 ∈ TopBases )