Step |
Hyp |
Ref |
Expression |
1 |
|
basprssdmsets.s |
⊢ ( 𝜑 → 𝑆 Struct 𝑋 ) |
2 |
|
basprssdmsets.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) |
3 |
|
basprssdmsets.w |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
4 |
|
basprssdmsets.b |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 ) |
5 |
4
|
orcd |
⊢ ( 𝜑 → ( ( Base ‘ ndx ) ∈ dom 𝑆 ∨ ( Base ‘ ndx ) ∈ { 𝐼 } ) ) |
6 |
|
elun |
⊢ ( ( Base ‘ ndx ) ∈ ( dom 𝑆 ∪ { 𝐼 } ) ↔ ( ( Base ‘ ndx ) ∈ dom 𝑆 ∨ ( Base ‘ ndx ) ∈ { 𝐼 } ) ) |
7 |
5 6
|
sylibr |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ ( dom 𝑆 ∪ { 𝐼 } ) ) |
8 |
|
snidg |
⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ∈ { 𝐼 } ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ { 𝐼 } ) |
10 |
9
|
olcd |
⊢ ( 𝜑 → ( 𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ { 𝐼 } ) ) |
11 |
|
elun |
⊢ ( 𝐼 ∈ ( dom 𝑆 ∪ { 𝐼 } ) ↔ ( 𝐼 ∈ dom 𝑆 ∨ 𝐼 ∈ { 𝐼 } ) ) |
12 |
10 11
|
sylibr |
⊢ ( 𝜑 → 𝐼 ∈ ( dom 𝑆 ∪ { 𝐼 } ) ) |
13 |
7 12
|
prssd |
⊢ ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ ( dom 𝑆 ∪ { 𝐼 } ) ) |
14 |
|
structex |
⊢ ( 𝑆 Struct 𝑋 → 𝑆 ∈ V ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
16 |
|
setsdm |
⊢ ( ( 𝑆 ∈ V ∧ 𝐸 ∈ 𝑊 ) → dom ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) = ( dom 𝑆 ∪ { 𝐼 } ) ) |
17 |
15 3 16
|
syl2anc |
⊢ ( 𝜑 → dom ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) = ( dom 𝑆 ∪ { 𝐼 } ) ) |
18 |
13 17
|
sseqtrrd |
⊢ ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ dom ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ) |