| Step |
Hyp |
Ref |
Expression |
| 1 |
|
basfn |
⊢ Base Fn V |
| 2 |
|
ssv |
⊢ Poset ⊆ V |
| 3 |
|
fnssres |
⊢ ( ( Base Fn V ∧ Poset ⊆ V ) → ( Base ↾ Poset ) Fn Poset ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( Base ↾ Poset ) Fn Poset |
| 5 |
|
dffn2 |
⊢ ( ( Base ↾ Poset ) Fn Poset ↔ ( Base ↾ Poset ) : Poset ⟶ V ) |
| 6 |
4 5
|
mpbi |
⊢ ( Base ↾ Poset ) : Poset ⟶ V |
| 7 |
|
exbaspos |
⊢ ( 𝑏 ∈ V → ∃ 𝑘 ∈ Poset 𝑏 = ( Base ‘ 𝑘 ) ) |
| 8 |
|
fvres |
⊢ ( 𝑘 ∈ Poset → ( ( Base ↾ Poset ) ‘ 𝑘 ) = ( Base ‘ 𝑘 ) ) |
| 9 |
8
|
eqeq2d |
⊢ ( 𝑘 ∈ Poset → ( 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) ↔ 𝑏 = ( Base ‘ 𝑘 ) ) ) |
| 10 |
9
|
rexbiia |
⊢ ( ∃ 𝑘 ∈ Poset 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ Poset 𝑏 = ( Base ‘ 𝑘 ) ) |
| 11 |
7 10
|
sylibr |
⊢ ( 𝑏 ∈ V → ∃ 𝑘 ∈ Poset 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) ) |
| 12 |
11
|
rgen |
⊢ ∀ 𝑏 ∈ V ∃ 𝑘 ∈ Poset 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) |
| 13 |
|
dffo3 |
⊢ ( ( Base ↾ Poset ) : Poset –onto→ V ↔ ( ( Base ↾ Poset ) : Poset ⟶ V ∧ ∀ 𝑏 ∈ V ∃ 𝑘 ∈ Poset 𝑏 = ( ( Base ↾ Poset ) ‘ 𝑘 ) ) ) |
| 14 |
6 12 13
|
mpbir2an |
⊢ ( Base ↾ Poset ) : Poset –onto→ V |