Metamath Proof Explorer


Theorem bastg

Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion bastg ( 𝐵𝑉𝐵 ⊆ ( topGen ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐵𝑉𝑥𝐵 ) → 𝑥𝐵 )
2 vex 𝑥 ∈ V
3 2 pwid 𝑥 ∈ 𝒫 𝑥
4 3 a1i ( ( 𝐵𝑉𝑥𝐵 ) → 𝑥 ∈ 𝒫 𝑥 )
5 1 4 elind ( ( 𝐵𝑉𝑥𝐵 ) → 𝑥 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) )
6 elssuni ( 𝑥 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) )
7 5 6 syl ( ( 𝐵𝑉𝑥𝐵 ) → 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) )
8 7 ex ( 𝐵𝑉 → ( 𝑥𝐵𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
9 eltg ( 𝐵𝑉 → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ( 𝐵 ∩ 𝒫 𝑥 ) ) )
10 8 9 sylibrd ( 𝐵𝑉 → ( 𝑥𝐵𝑥 ∈ ( topGen ‘ 𝐵 ) ) )
11 10 ssrdv ( 𝐵𝑉𝐵 ⊆ ( topGen ‘ 𝐵 ) )