Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
2
|
pwid |
⊢ 𝑥 ∈ 𝒫 𝑥 |
4 |
3
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝒫 𝑥 ) |
5 |
1 4
|
elind |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
6 |
|
elssuni |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ 𝒫 𝑥 ) → 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
8 |
7
|
ex |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
9 |
|
eltg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
10 |
8 9
|
sylibrd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
11 |
10
|
ssrdv |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |