Metamath Proof Explorer


Theorem bastop

Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion bastop ( 𝐵 ∈ TopBases → ( 𝐵 ∈ Top ↔ ( topGen ‘ 𝐵 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 tgtop ( 𝐵 ∈ Top → ( topGen ‘ 𝐵 ) = 𝐵 )
2 tgcl ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top )
3 eleq1 ( ( topGen ‘ 𝐵 ) = 𝐵 → ( ( topGen ‘ 𝐵 ) ∈ Top ↔ 𝐵 ∈ Top ) )
4 2 3 syl5ibcom ( 𝐵 ∈ TopBases → ( ( topGen ‘ 𝐵 ) = 𝐵𝐵 ∈ Top ) )
5 1 4 impbid2 ( 𝐵 ∈ TopBases → ( 𝐵 ∈ Top ↔ ( topGen ‘ 𝐵 ) = 𝐵 ) )