Description: Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | bastop | ⊢ ( 𝐵 ∈ TopBases → ( 𝐵 ∈ Top ↔ ( topGen ‘ 𝐵 ) = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop | ⊢ ( 𝐵 ∈ Top → ( topGen ‘ 𝐵 ) = 𝐵 ) | |
2 | tgcl | ⊢ ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top ) | |
3 | eleq1 | ⊢ ( ( topGen ‘ 𝐵 ) = 𝐵 → ( ( topGen ‘ 𝐵 ) ∈ Top ↔ 𝐵 ∈ Top ) ) | |
4 | 2 3 | syl5ibcom | ⊢ ( 𝐵 ∈ TopBases → ( ( topGen ‘ 𝐵 ) = 𝐵 → 𝐵 ∈ Top ) ) |
5 | 1 4 | impbid2 | ⊢ ( 𝐵 ∈ TopBases → ( 𝐵 ∈ Top ↔ ( topGen ‘ 𝐵 ) = 𝐵 ) ) |