Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( ( topGen ‘ 𝐵 ) = 𝐽 → ( ( topGen ‘ 𝐵 ) ∈ Top ↔ 𝐽 ∈ Top ) ) |
2 |
1
|
biimparc |
⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → ( topGen ‘ 𝐵 ) ∈ Top ) |
3 |
|
tgclb |
⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) |
4 |
2 3
|
sylibr |
⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵 ∈ TopBases ) |
5 |
|
bastg |
⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
7 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → ( topGen ‘ 𝐵 ) = 𝐽 ) |
8 |
6 7
|
sseqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵 ⊆ 𝐽 ) |
9 |
8
|
ex |
⊢ ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 → 𝐵 ⊆ 𝐽 ) ) |
10 |
9
|
pm4.71rd |
⊢ ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( 𝐵 ⊆ 𝐽 ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) ) ) |
11 |
|
bastop1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
12 |
11
|
pm5.32da |
⊢ ( 𝐽 ∈ Top → ( ( 𝐵 ⊆ 𝐽 ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) ↔ ( 𝐵 ⊆ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) ) |
13 |
10 12
|
bitrd |
⊢ ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( 𝐵 ⊆ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) ) |