Metamath Proof Explorer


Theorem bastop2

Description: A version of bastop1 that doesn't have B C_ J in the antecedent. (Contributed by NM, 3-Feb-2008)

Ref Expression
Assertion bastop2 ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( 𝐵𝐽 ∧ ∀ 𝑥𝐽𝑦 ( 𝑦𝐵𝑥 = 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( ( topGen ‘ 𝐵 ) = 𝐽 → ( ( topGen ‘ 𝐵 ) ∈ Top ↔ 𝐽 ∈ Top ) )
2 1 biimparc ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → ( topGen ‘ 𝐵 ) ∈ Top )
3 tgclb ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top )
4 2 3 sylibr ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵 ∈ TopBases )
5 bastg ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
6 4 5 syl ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
7 simpr ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → ( topGen ‘ 𝐵 ) = 𝐽 )
8 6 7 sseqtrd ( ( 𝐽 ∈ Top ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) → 𝐵𝐽 )
9 8 ex ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽𝐵𝐽 ) )
10 9 pm4.71rd ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( 𝐵𝐽 ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) ) )
11 bastop1 ( ( 𝐽 ∈ Top ∧ 𝐵𝐽 ) → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ∀ 𝑥𝐽𝑦 ( 𝑦𝐵𝑥 = 𝑦 ) ) )
12 11 pm5.32da ( 𝐽 ∈ Top → ( ( 𝐵𝐽 ∧ ( topGen ‘ 𝐵 ) = 𝐽 ) ↔ ( 𝐵𝐽 ∧ ∀ 𝑥𝐽𝑦 ( 𝑦𝐵𝑥 = 𝑦 ) ) ) )
13 10 12 bitrd ( 𝐽 ∈ Top → ( ( topGen ‘ 𝐵 ) = 𝐽 ↔ ( 𝐵𝐽 ∧ ∀ 𝑥𝐽𝑦 ( 𝑦𝐵𝑥 = 𝑦 ) ) ) )