Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 C 𝑘 ) = ( 0 C 𝑘 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑚 = 0 → ( ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ( 0 C 𝑘 ) ∈ ℕ0 ) ) |
3 |
2
|
ralbidv |
⊢ ( 𝑚 = 0 → ( ∀ 𝑘 ∈ ℤ ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑘 ∈ ℤ ( 0 C 𝑘 ) ∈ ℕ0 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 C 𝑘 ) = ( 𝑛 C 𝑘 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ( 𝑛 C 𝑘 ) ∈ ℕ0 ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑘 ∈ ℤ ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑘 ∈ ℤ ( 𝑛 C 𝑘 ) ∈ ℕ0 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 C 𝑘 ) = ( ( 𝑛 + 1 ) C 𝑘 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ∀ 𝑘 ∈ ℤ ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑘 ∈ ℤ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 C 𝑘 ) = ( 𝑁 C 𝑘 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ( 𝑁 C 𝑘 ) ∈ ℕ0 ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑚 = 𝑁 → ( ∀ 𝑘 ∈ ℤ ( 𝑚 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑘 ∈ ℤ ( 𝑁 C 𝑘 ) ∈ ℕ0 ) ) |
13 |
|
elfz1eq |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝑘 = 0 ) |
14 |
13
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ∈ ( 0 ... 0 ) ) → 𝑘 = 0 ) |
15 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) = ( 0 C 0 ) ) |
16 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
17 |
|
bcn0 |
⊢ ( 0 ∈ ℕ0 → ( 0 C 0 ) = 1 ) |
18 |
16 17
|
ax-mp |
⊢ ( 0 C 0 ) = 1 |
19 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
20 |
18 19
|
eqeltri |
⊢ ( 0 C 0 ) ∈ ℕ0 |
21 |
15 20
|
eqeltrdi |
⊢ ( 𝑘 = 0 → ( 0 C 𝑘 ) ∈ ℕ0 ) |
22 |
14 21
|
syl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) ∈ ℕ0 ) |
23 |
|
bcval3 |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) |
24 |
16 23
|
mp3an1 |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) = 0 ) |
25 |
24 16
|
eqeltrdi |
⊢ ( ( 𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ ( 0 ... 0 ) ) → ( 0 C 𝑘 ) ∈ ℕ0 ) |
26 |
22 25
|
pm2.61dan |
⊢ ( 𝑘 ∈ ℤ → ( 0 C 𝑘 ) ∈ ℕ0 ) |
27 |
26
|
rgen |
⊢ ∀ 𝑘 ∈ ℤ ( 0 C 𝑘 ) ∈ ℕ0 |
28 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑛 C 𝑘 ) = ( 𝑛 C 𝑚 ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑛 C 𝑘 ) ∈ ℕ0 ↔ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) ) |
30 |
29
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℤ ( 𝑛 C 𝑘 ) ∈ ℕ0 ↔ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) |
31 |
|
bcpasc |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 C 𝑘 ) + ( 𝑛 C ( 𝑘 − 1 ) ) ) = ( ( 𝑛 + 1 ) C 𝑘 ) ) |
32 |
31
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 C 𝑘 ) + ( 𝑛 C ( 𝑘 − 1 ) ) ) = ( ( 𝑛 + 1 ) C 𝑘 ) ) |
33 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝑛 C 𝑚 ) = ( 𝑛 C 𝑘 ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑛 C 𝑚 ) ∈ ℕ0 ↔ ( 𝑛 C 𝑘 ) ∈ ℕ0 ) ) |
35 |
34
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑛 C 𝑘 ) ∈ ℕ0 ) |
36 |
|
peano2zm |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 − 1 ) ∈ ℤ ) |
37 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( 𝑛 C 𝑚 ) = ( 𝑛 C ( 𝑘 − 1 ) ) ) |
38 |
37
|
eleq1d |
⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( ( 𝑛 C 𝑚 ) ∈ ℕ0 ↔ ( 𝑛 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) ) |
39 |
38
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ∧ ( 𝑘 − 1 ) ∈ ℤ ) → ( 𝑛 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
40 |
36 39
|
sylan2 |
⊢ ( ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑛 C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
41 |
35 40
|
nn0addcld |
⊢ ( ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 C 𝑘 ) + ( 𝑛 C ( 𝑘 − 1 ) ) ) ∈ ℕ0 ) |
42 |
41
|
adantll |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 C 𝑘 ) + ( 𝑛 C ( 𝑘 − 1 ) ) ) ∈ ℕ0 ) |
43 |
32 42
|
eqeltrrd |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) |
44 |
43
|
ralrimiva |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 ) → ∀ 𝑘 ∈ ℤ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) |
45 |
44
|
ex |
⊢ ( 𝑛 ∈ ℕ0 → ( ∀ 𝑚 ∈ ℤ ( 𝑛 C 𝑚 ) ∈ ℕ0 → ∀ 𝑘 ∈ ℤ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) ) |
46 |
30 45
|
syl5bi |
⊢ ( 𝑛 ∈ ℕ0 → ( ∀ 𝑘 ∈ ℤ ( 𝑛 C 𝑘 ) ∈ ℕ0 → ∀ 𝑘 ∈ ℤ ( ( 𝑛 + 1 ) C 𝑘 ) ∈ ℕ0 ) ) |
47 |
3 6 9 12 27 46
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑘 ∈ ℤ ( 𝑁 C 𝑘 ) ∈ ℕ0 ) |
48 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑁 C 𝑘 ) = ( 𝑁 C 𝐾 ) ) |
49 |
48
|
eleq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑁 C 𝑘 ) ∈ ℕ0 ↔ ( 𝑁 C 𝐾 ) ∈ ℕ0 ) ) |
50 |
49
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℤ ( 𝑁 C 𝑘 ) ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |
51 |
47 50
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |