Description: A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 10-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | bccl2 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz3nn0 | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
2 | elfzelz | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℤ ) | |
3 | bccl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |
5 | bcrpcl | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℝ+ ) | |
6 | 5 | rpgt0d | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 0 < ( 𝑁 C 𝐾 ) ) |
7 | elnnnn0b | ⊢ ( ( 𝑁 C 𝐾 ) ∈ ℕ ↔ ( ( 𝑁 C 𝐾 ) ∈ ℕ0 ∧ 0 < ( 𝑁 C 𝐾 ) ) ) | |
8 | 4 6 7 | sylanbrc | ⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℕ ) |