Metamath Proof Explorer


Theorem bccl2

Description: A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bccl2 ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 elfz3nn0 ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 )
2 elfzelz ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℤ )
3 bccl ( ( 𝑁 ∈ ℕ0𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 )
4 1 2 3 syl2anc ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 )
5 bcrpcl ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℝ+ )
6 5 rpgt0d ( 𝐾 ∈ ( 0 ... 𝑁 ) → 0 < ( 𝑁 C 𝐾 ) )
7 elnnnn0b ( ( 𝑁 C 𝐾 ) ∈ ℕ ↔ ( ( 𝑁 C 𝐾 ) ∈ ℕ0 ∧ 0 < ( 𝑁 C 𝐾 ) ) )
8 4 6 7 sylanbrc ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℕ )