Metamath Proof Explorer
Description: A binomial coefficient, in its extended domain, is a nonnegative
integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
bccld.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
|
|
bccld.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
|
Assertion |
bccld |
⊢ ( 𝜑 → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bccld.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
bccld.k |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
3 |
|
bccl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 C 𝐾 ) ∈ ℕ0 ) |