| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 2 |
|
bcval2 |
⊢ ( 0 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 0 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 0 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) ) ) |
| 4 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
| 5 |
4
|
subid1d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 0 ) = 𝑁 ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 − 0 ) ) = ( ! ‘ 𝑁 ) ) |
| 7 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 8 |
|
oveq12 |
⊢ ( ( ( ! ‘ ( 𝑁 − 0 ) ) = ( ! ‘ 𝑁 ) ∧ ( ! ‘ 0 ) = 1 ) → ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) = ( ( ! ‘ 𝑁 ) · 1 ) ) |
| 9 |
6 7 8
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) = ( ( ! ‘ 𝑁 ) · 1 ) ) |
| 10 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 11 |
10
|
nncnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 12 |
11
|
mulridd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) · 1 ) = ( ! ‘ 𝑁 ) ) |
| 13 |
9 12
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) = ( ! ‘ 𝑁 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) ) = ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) ) |
| 15 |
|
facne0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ≠ 0 ) |
| 16 |
11 15
|
dividd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) = 1 ) |
| 17 |
14 16
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 0 ) ) · ( ! ‘ 0 ) ) ) = 1 ) |
| 18 |
3 17
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 0 ) = 1 ) |