| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 2 |  | 1eluzge0 | ⊢ 1  ∈  ( ℤ≥ ‘ 0 ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 4 |  | elnnuz | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 5 | 4 | biimpi | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 6 |  | elfzuzb | ⊢ ( 1  ∈  ( 0 ... 𝑁 )  ↔  ( 1  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) ) | 
						
							| 7 | 3 5 6 | sylanbrc | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 8 |  | bcval2 | ⊢ ( 1  ∈  ( 0 ... 𝑁 )  →  ( 𝑁 C 1 )  =  ( ( ! ‘ 𝑁 )  /  ( ( ! ‘ ( 𝑁  −  1 ) )  ·  ( ! ‘ 1 ) ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁 C 1 )  =  ( ( ! ‘ 𝑁 )  /  ( ( ! ‘ ( 𝑁  −  1 ) )  ·  ( ! ‘ 1 ) ) ) ) | 
						
							| 10 |  | facnn2 | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ 𝑁 )  =  ( ( ! ‘ ( 𝑁  −  1 ) )  ·  𝑁 ) ) | 
						
							| 11 |  | fac1 | ⊢ ( ! ‘ 1 )  =  1 | 
						
							| 12 | 11 | oveq2i | ⊢ ( ( ! ‘ ( 𝑁  −  1 ) )  ·  ( ! ‘ 1 ) )  =  ( ( ! ‘ ( 𝑁  −  1 ) )  ·  1 ) | 
						
							| 13 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | faccld | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ ( 𝑁  −  1 ) )  ∈  ℕ ) | 
						
							| 15 | 14 | nncnd | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ ( 𝑁  −  1 ) )  ∈  ℂ ) | 
						
							| 16 | 15 | mulridd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ! ‘ ( 𝑁  −  1 ) )  ·  1 )  =  ( ! ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 17 | 12 16 | eqtrid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ! ‘ ( 𝑁  −  1 ) )  ·  ( ! ‘ 1 ) )  =  ( ! ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 18 | 10 17 | oveq12d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ! ‘ 𝑁 )  /  ( ( ! ‘ ( 𝑁  −  1 ) )  ·  ( ! ‘ 1 ) ) )  =  ( ( ( ! ‘ ( 𝑁  −  1 ) )  ·  𝑁 )  /  ( ! ‘ ( 𝑁  −  1 ) ) ) ) | 
						
							| 19 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 20 | 14 | nnne0d | ⊢ ( 𝑁  ∈  ℕ  →  ( ! ‘ ( 𝑁  −  1 ) )  ≠  0 ) | 
						
							| 21 | 19 15 20 | divcan3d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ! ‘ ( 𝑁  −  1 ) )  ·  𝑁 )  /  ( ! ‘ ( 𝑁  −  1 ) ) )  =  𝑁 ) | 
						
							| 22 | 9 18 21 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁 C 1 )  =  𝑁 ) | 
						
							| 23 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 24 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 25 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 26 | 25 | olci | ⊢ ( 1  <  0  ∨  0  <  1 ) | 
						
							| 27 |  | bcval4 | ⊢ ( ( 0  ∈  ℕ0  ∧  1  ∈  ℤ  ∧  ( 1  <  0  ∨  0  <  1 ) )  →  ( 0 C 1 )  =  0 ) | 
						
							| 28 | 23 24 26 27 | mp3an | ⊢ ( 0 C 1 )  =  0 | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁 C 1 )  =  ( 0 C 1 ) ) | 
						
							| 30 |  | eqeq12 | ⊢ ( ( ( 𝑁 C 1 )  =  ( 0 C 1 )  ∧  𝑁  =  0 )  →  ( ( 𝑁 C 1 )  =  𝑁  ↔  ( 0 C 1 )  =  0 ) ) | 
						
							| 31 | 29 30 | mpancom | ⊢ ( 𝑁  =  0  →  ( ( 𝑁 C 1 )  =  𝑁  ↔  ( 0 C 1 )  =  0 ) ) | 
						
							| 32 | 28 31 | mpbiri | ⊢ ( 𝑁  =  0  →  ( 𝑁 C 1 )  =  𝑁 ) | 
						
							| 33 | 22 32 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  ( 𝑁 C 1 )  =  𝑁 ) | 
						
							| 34 | 1 33 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 C 1 )  =  𝑁 ) |