| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 2 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 3 |  | bccl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  ∈  ℤ )  →  ( 𝑁 C 2 )  ∈  ℕ0 ) | 
						
							| 4 | 2 3 | mpan2 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 C 2 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0cnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 C 2 )  ∈  ℂ ) | 
						
							| 6 | 1 5 | addcomd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  ( 𝑁 C 2 ) )  =  ( ( 𝑁 C 2 )  +  𝑁 ) ) | 
						
							| 7 |  | bcn1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 C 1 )  =  𝑁 ) | 
						
							| 8 |  | 1e2m1 | ⊢ 1  =  ( 2  −  1 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  1  =  ( 2  −  1 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁 C 1 )  =  ( 𝑁 C ( 2  −  1 ) ) ) | 
						
							| 11 | 7 10 | eqtr3d | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  =  ( 𝑁 C ( 2  −  1 ) ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁 C 2 )  +  𝑁 )  =  ( ( 𝑁 C 2 )  +  ( 𝑁 C ( 2  −  1 ) ) ) ) | 
						
							| 13 |  | bcpasc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  ∈  ℤ )  →  ( ( 𝑁 C 2 )  +  ( 𝑁 C ( 2  −  1 ) ) )  =  ( ( 𝑁  +  1 ) C 2 ) ) | 
						
							| 14 | 2 13 | mpan2 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁 C 2 )  +  ( 𝑁 C ( 2  −  1 ) ) )  =  ( ( 𝑁  +  1 ) C 2 ) ) | 
						
							| 15 | 6 12 14 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  ( 𝑁 C 2 ) )  =  ( ( 𝑁  +  1 ) C 2 ) ) |