Description: N choose N is 1. Remark in Gleason p. 296. (Contributed by NM, 17-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | bcnn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 𝑁 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z | ⊢ 0 ∈ ℤ | |
2 | bccmpl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℤ ) → ( 𝑁 C 0 ) = ( 𝑁 C ( 𝑁 − 0 ) ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 0 ) = ( 𝑁 C ( 𝑁 − 0 ) ) ) |
4 | bcn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 0 ) = 1 ) | |
5 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
6 | 5 | subid1d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 − 0 ) = 𝑁 ) |
7 | 6 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C ( 𝑁 − 0 ) ) = ( 𝑁 C 𝑁 ) ) |
8 | 3 4 7 | 3eqtr3rd | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 𝑁 ) = 1 ) |