| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 2 |
|
elfzp12 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 = 0 ∨ 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) ) |
| 3 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 4 |
2 3
|
eleq2s |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 = 0 ∨ 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 = 0 ∨ 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) ) ) |
| 6 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
| 7 |
|
bcn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 0 ) = 1 ) |
| 8 |
|
0z |
⊢ 0 ∈ ℤ |
| 9 |
|
1z |
⊢ 1 ∈ ℤ |
| 10 |
|
zsubcl |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 0 − 1 ) ∈ ℤ ) |
| 11 |
8 9 10
|
mp2an |
⊢ ( 0 − 1 ) ∈ ℤ |
| 12 |
|
0re |
⊢ 0 ∈ ℝ |
| 13 |
|
ltm1 |
⊢ ( 0 ∈ ℝ → ( 0 − 1 ) < 0 ) |
| 14 |
12 13
|
ax-mp |
⊢ ( 0 − 1 ) < 0 |
| 15 |
14
|
orci |
⊢ ( ( 0 − 1 ) < 0 ∨ 𝑁 < ( 0 − 1 ) ) |
| 16 |
|
bcval4 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 0 − 1 ) ∈ ℤ ∧ ( ( 0 − 1 ) < 0 ∨ 𝑁 < ( 0 − 1 ) ) ) → ( 𝑁 C ( 0 − 1 ) ) = 0 ) |
| 17 |
11 15 16
|
mp3an23 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C ( 0 − 1 ) ) = 0 ) |
| 18 |
7 17
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 C 0 ) + ( 𝑁 C ( 0 − 1 ) ) ) = ( 1 + 0 ) ) |
| 19 |
|
bcn0 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ( 𝑁 + 1 ) C 0 ) = 1 ) |
| 20 |
1 19
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C 0 ) = 1 ) |
| 21 |
6 18 20
|
3eqtr4a |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 C 0 ) + ( 𝑁 C ( 0 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 0 ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝐾 = 0 → ( 𝑁 C 𝐾 ) = ( 𝑁 C 0 ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝐾 = 0 → ( 𝐾 − 1 ) = ( 0 − 1 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝐾 = 0 → ( 𝑁 C ( 𝐾 − 1 ) ) = ( 𝑁 C ( 0 − 1 ) ) ) |
| 25 |
22 24
|
oveq12d |
⊢ ( 𝐾 = 0 → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 C 0 ) + ( 𝑁 C ( 0 − 1 ) ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝐾 = 0 → ( ( 𝑁 + 1 ) C 𝐾 ) = ( ( 𝑁 + 1 ) C 0 ) ) |
| 27 |
25 26
|
eqeq12d |
⊢ ( 𝐾 = 0 → ( ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ↔ ( ( 𝑁 C 0 ) + ( 𝑁 C ( 0 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 0 ) ) ) |
| 28 |
21 27
|
syl5ibrcom |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 = 0 → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) |
| 30 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 31 |
30
|
oveq1i |
⊢ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) = ( 1 ... ( 𝑁 + 1 ) ) |
| 32 |
29 31
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 33 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 34 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 35 |
33 34
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 36 |
|
fzm1 |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) ) |
| 37 |
36
|
biimpa |
⊢ ( ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐾 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) |
| 38 |
35 37
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝐾 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) |
| 39 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
| 40 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 41 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 42 |
39 40 41
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 1 ... 𝑁 ) ) |
| 44 |
43
|
eleq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ↔ 𝐾 ∈ ( 1 ... 𝑁 ) ) ) |
| 45 |
44
|
biimpa |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ) → 𝐾 ∈ ( 1 ... 𝑁 ) ) |
| 46 |
|
fz1ssfz0 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 0 ... 𝑁 ) |
| 47 |
46
|
sseli |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ( 0 ... 𝑁 ) ) |
| 48 |
|
bcp1n |
⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( ( 𝑁 + 1 ) C 𝐾 ) = ( ( 𝑁 C 𝐾 ) · ( ( 𝑁 + 1 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ) ) |
| 49 |
47 48
|
syl |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 + 1 ) C 𝐾 ) = ( ( 𝑁 C 𝐾 ) · ( ( 𝑁 + 1 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ) ) |
| 50 |
|
bcrpcl |
⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℝ+ ) |
| 51 |
47 50
|
syl |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℝ+ ) |
| 52 |
51
|
rpcnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℂ ) |
| 53 |
|
elfzuz2 |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 54 |
53 34
|
eleqtrrdi |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ℕ ) |
| 55 |
54
|
peano2nnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 + 1 ) ∈ ℕ ) |
| 56 |
55
|
nncnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 57 |
54
|
nncnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝑁 ∈ ℂ ) |
| 58 |
|
1cnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℂ ) |
| 59 |
|
elfzelz |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ℤ ) |
| 60 |
59
|
zcnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ℂ ) |
| 61 |
57 58 60
|
addsubd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 + 1 ) − 𝐾 ) = ( ( 𝑁 − 𝐾 ) + 1 ) ) |
| 62 |
|
fznn0sub |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 − 𝐾 ) ∈ ℕ0 ) |
| 63 |
|
nn0p1nn |
⊢ ( ( 𝑁 − 𝐾 ) ∈ ℕ0 → ( ( 𝑁 − 𝐾 ) + 1 ) ∈ ℕ ) |
| 64 |
62 63
|
syl |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 − 𝐾 ) + 1 ) ∈ ℕ ) |
| 65 |
61 64
|
eqeltrd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 + 1 ) − 𝐾 ) ∈ ℕ ) |
| 66 |
65
|
nncnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 + 1 ) − 𝐾 ) ∈ ℂ ) |
| 67 |
65
|
nnne0d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 + 1 ) − 𝐾 ) ≠ 0 ) |
| 68 |
52 56 66 67
|
div12d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C 𝐾 ) · ( ( 𝑁 + 1 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ) = ( ( 𝑁 + 1 ) · ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ) ) |
| 69 |
65
|
nnrpd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 + 1 ) − 𝐾 ) ∈ ℝ+ ) |
| 70 |
51 69
|
rpdivcld |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ∈ ℝ+ ) |
| 71 |
70
|
rpcnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ∈ ℂ ) |
| 72 |
56 71
|
mulcomd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 + 1 ) · ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ) = ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( 𝑁 + 1 ) ) ) |
| 73 |
68 72
|
eqtrd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C 𝐾 ) · ( ( 𝑁 + 1 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ) = ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( 𝑁 + 1 ) ) ) |
| 74 |
56 60
|
npcand |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 + 1 ) − 𝐾 ) + 𝐾 ) = ( 𝑁 + 1 ) ) |
| 75 |
74
|
oveq2d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( ( ( 𝑁 + 1 ) − 𝐾 ) + 𝐾 ) ) = ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( 𝑁 + 1 ) ) ) |
| 76 |
71 66 60
|
adddid |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( ( ( 𝑁 + 1 ) − 𝐾 ) + 𝐾 ) ) = ( ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( ( 𝑁 + 1 ) − 𝐾 ) ) + ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · 𝐾 ) ) ) |
| 77 |
73 75 76
|
3eqtr2d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C 𝐾 ) · ( ( 𝑁 + 1 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ) = ( ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( ( 𝑁 + 1 ) − 𝐾 ) ) + ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · 𝐾 ) ) ) |
| 78 |
52 66 67
|
divcan1d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( ( 𝑁 + 1 ) − 𝐾 ) ) = ( 𝑁 C 𝐾 ) ) |
| 79 |
|
elfznn |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ℕ ) |
| 80 |
79
|
nnne0d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ≠ 0 ) |
| 81 |
52 66 60 67 80
|
divdiv2d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C 𝐾 ) / ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ) = ( ( ( 𝑁 C 𝐾 ) · 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) ) |
| 82 |
|
bcm1k |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 C 𝐾 ) = ( ( 𝑁 C ( 𝐾 − 1 ) ) · ( ( 𝑁 − ( 𝐾 − 1 ) ) / 𝐾 ) ) ) |
| 83 |
57 60 58
|
subsub3d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 − ( 𝐾 − 1 ) ) = ( ( 𝑁 + 1 ) − 𝐾 ) ) |
| 84 |
83
|
oveq1d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 − ( 𝐾 − 1 ) ) / 𝐾 ) = ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ) |
| 85 |
84
|
oveq2d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C ( 𝐾 − 1 ) ) · ( ( 𝑁 − ( 𝐾 − 1 ) ) / 𝐾 ) ) = ( ( 𝑁 C ( 𝐾 − 1 ) ) · ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ) ) |
| 86 |
82 85
|
eqtrd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 C 𝐾 ) = ( ( 𝑁 C ( 𝐾 − 1 ) ) · ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ) ) |
| 87 |
|
fzelp1 |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) |
| 88 |
55
|
nnzd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 + 1 ) ∈ ℤ ) |
| 89 |
|
elfzm1b |
⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ( 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 − 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ) ) |
| 90 |
59 88 89
|
syl2anc |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 − 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ) ) |
| 91 |
87 90
|
mpbid |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝐾 − 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ) |
| 92 |
57 40 41
|
sylancl |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 93 |
92
|
oveq2d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
| 94 |
91 93
|
eleqtrd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝐾 − 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 95 |
|
bcrpcl |
⊢ ( ( 𝐾 − 1 ) ∈ ( 0 ... 𝑁 ) → ( 𝑁 C ( 𝐾 − 1 ) ) ∈ ℝ+ ) |
| 96 |
94 95
|
syl |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 C ( 𝐾 − 1 ) ) ∈ ℝ+ ) |
| 97 |
96
|
rpcnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( 𝑁 C ( 𝐾 − 1 ) ) ∈ ℂ ) |
| 98 |
79
|
nnrpd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ℝ+ ) |
| 99 |
69 98
|
rpdivcld |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ∈ ℝ+ ) |
| 100 |
99
|
rpcnd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ∈ ℂ ) |
| 101 |
99
|
rpne0d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ≠ 0 ) |
| 102 |
52 97 100 101
|
divmul3d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 C 𝐾 ) / ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ) = ( 𝑁 C ( 𝐾 − 1 ) ) ↔ ( 𝑁 C 𝐾 ) = ( ( 𝑁 C ( 𝐾 − 1 ) ) · ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ) ) ) |
| 103 |
86 102
|
mpbird |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C 𝐾 ) / ( ( ( 𝑁 + 1 ) − 𝐾 ) / 𝐾 ) ) = ( 𝑁 C ( 𝐾 − 1 ) ) ) |
| 104 |
52 60 66 67
|
div23d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 C 𝐾 ) · 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) = ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · 𝐾 ) ) |
| 105 |
81 103 104
|
3eqtr3rd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · 𝐾 ) = ( 𝑁 C ( 𝐾 − 1 ) ) ) |
| 106 |
78 105
|
oveq12d |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · ( ( 𝑁 + 1 ) − 𝐾 ) ) + ( ( ( 𝑁 C 𝐾 ) / ( ( 𝑁 + 1 ) − 𝐾 ) ) · 𝐾 ) ) = ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) ) |
| 107 |
49 77 106
|
3eqtrrd |
⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 108 |
45 107
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 109 |
|
oveq2 |
⊢ ( 𝐾 = ( 𝑁 + 1 ) → ( 𝑁 C 𝐾 ) = ( 𝑁 C ( 𝑁 + 1 ) ) ) |
| 110 |
33
|
nnzd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 111 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 112 |
111
|
ltp1d |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 < ( 𝑁 + 1 ) ) |
| 113 |
112
|
olcd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) < 0 ∨ 𝑁 < ( 𝑁 + 1 ) ) ) |
| 114 |
|
bcval4 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ ( ( 𝑁 + 1 ) < 0 ∨ 𝑁 < ( 𝑁 + 1 ) ) ) → ( 𝑁 C ( 𝑁 + 1 ) ) = 0 ) |
| 115 |
110 113 114
|
mpd3an23 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C ( 𝑁 + 1 ) ) = 0 ) |
| 116 |
109 115
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝑁 C 𝐾 ) = 0 ) |
| 117 |
|
oveq1 |
⊢ ( 𝐾 = ( 𝑁 + 1 ) → ( 𝐾 − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
| 118 |
117 42
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝐾 − 1 ) = 𝑁 ) |
| 119 |
118
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝑁 C ( 𝐾 − 1 ) ) = ( 𝑁 C 𝑁 ) ) |
| 120 |
|
bcnn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 𝑁 ) = 1 ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝑁 C 𝑁 ) = 1 ) |
| 122 |
119 121
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( 𝑁 C ( 𝐾 − 1 ) ) = 1 ) |
| 123 |
116 122
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( 0 + 1 ) ) |
| 124 |
|
oveq2 |
⊢ ( 𝐾 = ( 𝑁 + 1 ) → ( ( 𝑁 + 1 ) C 𝐾 ) = ( ( 𝑁 + 1 ) C ( 𝑁 + 1 ) ) ) |
| 125 |
|
bcnn |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ( 𝑁 + 1 ) C ( 𝑁 + 1 ) ) = 1 ) |
| 126 |
1 125
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C ( 𝑁 + 1 ) ) = 1 ) |
| 127 |
124 126
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( 𝑁 + 1 ) C 𝐾 ) = 1 ) |
| 128 |
30 123 127
|
3eqtr4a |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 = ( 𝑁 + 1 ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 129 |
108 128
|
jaodan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐾 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∨ 𝐾 = ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 130 |
38 129
|
syldan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 131 |
32 130
|
syldan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 132 |
131
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) ) |
| 133 |
28 132
|
jaod |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐾 = 0 ∨ 𝐾 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) ) |
| 134 |
5 133
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) ) |
| 135 |
134
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 136 |
135
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 137 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 138 |
|
fzelp1 |
⊢ ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 139 |
138
|
con3i |
⊢ ( ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) → ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) |
| 140 |
|
bcval3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝐾 ) = 0 ) |
| 141 |
140
|
3expa |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝐾 ) = 0 ) |
| 142 |
139 141
|
sylan2 |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C 𝐾 ) = 0 ) |
| 143 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 144 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 145 |
|
peano2zm |
⊢ ( 𝐾 ∈ ℤ → ( 𝐾 − 1 ) ∈ ℤ ) |
| 146 |
144 145
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 147 |
39
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 148 |
147 40 41
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 149 |
148
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 0 ... 𝑁 ) ) |
| 150 |
149
|
eleq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 − 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ↔ ( 𝐾 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
| 151 |
|
id |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℤ ) |
| 152 |
1
|
nn0zd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℤ ) |
| 153 |
151 152 89
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) ↔ ( 𝐾 − 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) ) ) |
| 154 |
|
fz1ssfz0 |
⊢ ( 1 ... ( 𝑁 + 1 ) ) ⊆ ( 0 ... ( 𝑁 + 1 ) ) |
| 155 |
154
|
sseli |
⊢ ( 𝐾 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 156 |
153 155
|
biimtrrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 − 1 ) ∈ ( 0 ... ( ( 𝑁 + 1 ) − 1 ) ) → 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) ) |
| 157 |
150 156
|
sylbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 − 1 ) ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) ) |
| 158 |
157
|
con3dimp |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ¬ ( 𝐾 − 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 159 |
|
bcval3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℤ ∧ ¬ ( 𝐾 − 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C ( 𝐾 − 1 ) ) = 0 ) |
| 160 |
143 146 158 159
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 C ( 𝐾 − 1 ) ) = 0 ) |
| 161 |
142 160
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( 0 + 0 ) ) |
| 162 |
143 1
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 163 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) |
| 164 |
|
bcval3 |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) C 𝐾 ) = 0 ) |
| 165 |
162 144 163 164
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) C 𝐾 ) = 0 ) |
| 166 |
137 161 165
|
3eqtr4a |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) ∧ ¬ 𝐾 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |
| 167 |
136 166
|
pm2.61dan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( ( 𝑁 C 𝐾 ) + ( 𝑁 C ( 𝐾 − 1 ) ) ) = ( ( 𝑁 + 1 ) C 𝐾 ) ) |