Metamath Proof Explorer


Theorem bcrpcl

Description: Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 .) (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcrpcl ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 bcval2 ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) )
2 elfz3nn0 ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 )
3 2 faccld ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( ! ‘ 𝑁 ) ∈ ℕ )
4 fznn0sub ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁𝐾 ) ∈ ℕ0 )
5 elfznn0 ( 𝐾 ∈ ( 0 ... 𝑁 ) → 𝐾 ∈ ℕ0 )
6 faccl ( ( 𝑁𝐾 ) ∈ ℕ0 → ( ! ‘ ( 𝑁𝐾 ) ) ∈ ℕ )
7 faccl ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ )
8 nnmulcl ( ( ( ! ‘ ( 𝑁𝐾 ) ) ∈ ℕ ∧ ( ! ‘ 𝐾 ) ∈ ℕ ) → ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ )
9 6 7 8 syl2an ( ( ( 𝑁𝐾 ) ∈ ℕ0𝐾 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ )
10 4 5 9 syl2anc ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ )
11 nnrp ( ( ! ‘ 𝑁 ) ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℝ+ )
12 nnrp ( ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ → ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℝ+ )
13 rpdivcl ( ( ( ! ‘ 𝑁 ) ∈ ℝ+ ∧ ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ∈ ℝ+ )
14 11 12 13 syl2an ( ( ( ! ‘ 𝑁 ) ∈ ℕ ∧ ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ∈ ℕ ) → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ∈ ℝ+ )
15 3 10 14 syl2anc ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ∈ ℝ+ )
16 1 15 eqeltrd ( 𝐾 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝐾 ) ∈ ℝ+ )