Step |
Hyp |
Ref |
Expression |
1 |
|
hicl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) |
2 |
1
|
abscld |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ ) |
4 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
normcl |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) ∈ ℝ ) |
6 |
|
remulcl |
⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ ( normℎ ‘ 𝐵 ) ∈ ℝ ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) |
9 |
5
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐵 ) ∈ ℝ ) |
10 |
|
bcs |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
12 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
13 |
|
normge0 |
⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐵 ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → 0 ≤ ( normℎ ‘ 𝐵 ) ) |
15 |
9 14
|
jca |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) |
16 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐴 ) ≤ 1 ) |
17 |
|
1re |
⊢ 1 ∈ ℝ |
18 |
|
lemul1a |
⊢ ( ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) |
19 |
17 18
|
mp3anl2 |
⊢ ( ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) |
20 |
12 15 16 19
|
syl21anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) |
21 |
5
|
recnd |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) ∈ ℂ ) |
22 |
21
|
mulid2d |
⊢ ( 𝐵 ∈ ℋ → ( 1 · ( normℎ ‘ 𝐵 ) ) = ( normℎ ‘ 𝐵 ) ) |
23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( 1 · ( normℎ ‘ 𝐵 ) ) = ( normℎ ‘ 𝐵 ) ) |
24 |
20 23
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( normℎ ‘ 𝐵 ) ) |
25 |
3 8 9 11 24
|
letrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( normℎ ‘ 𝐵 ) ) |