| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hicl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) |
| 2 |
1
|
abscld |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ ) |
| 3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ ) |
| 4 |
|
normcl |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
|
normcl |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) ∈ ℝ ) |
| 6 |
|
remulcl |
⊢ ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ ( normℎ ‘ 𝐵 ) ∈ ℝ ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) |
| 7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ∈ ℝ ) |
| 9 |
5
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐵 ) ∈ ℝ ) |
| 10 |
|
bcs |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
| 12 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 13 |
|
normge0 |
⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐵 ) ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → 0 ≤ ( normℎ ‘ 𝐵 ) ) |
| 15 |
9 14
|
jca |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) |
| 16 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ 𝐴 ) ≤ 1 ) |
| 17 |
|
1re |
⊢ 1 ∈ ℝ |
| 18 |
|
lemul1a |
⊢ ( ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) |
| 19 |
17 18
|
mp3anl2 |
⊢ ( ( ( ( normℎ ‘ 𝐴 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) ) ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) |
| 20 |
12 15 16 19
|
syl21anc |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( 1 · ( normℎ ‘ 𝐵 ) ) ) |
| 21 |
5
|
recnd |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) ∈ ℂ ) |
| 22 |
21
|
mullidd |
⊢ ( 𝐵 ∈ ℋ → ( 1 · ( normℎ ‘ 𝐵 ) ) = ( normℎ ‘ 𝐵 ) ) |
| 23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( 1 · ( normℎ ‘ 𝐵 ) ) = ( normℎ ‘ 𝐵 ) ) |
| 24 |
20 23
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ≤ ( normℎ ‘ 𝐵 ) ) |
| 25 |
3 8 9 11 24
|
letrd |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( normℎ ‘ 𝐵 ) ) |