Step |
Hyp |
Ref |
Expression |
1 |
|
bcs.1 |
⊢ 𝐴 ∈ ℋ |
2 |
|
bcs.2 |
⊢ 𝐵 ∈ ℋ |
3 |
|
fveq2 |
⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ 0 ) ) |
4 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
5 |
|
normge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
6 |
1 5
|
ax-mp |
⊢ 0 ≤ ( normℎ ‘ 𝐴 ) |
7 |
|
normge0 |
⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐵 ) ) |
8 |
2 7
|
ax-mp |
⊢ 0 ≤ ( normℎ ‘ 𝐵 ) |
9 |
1
|
normcli |
⊢ ( normℎ ‘ 𝐴 ) ∈ ℝ |
10 |
2
|
normcli |
⊢ ( normℎ ‘ 𝐵 ) ∈ ℝ |
11 |
9 10
|
mulge0i |
⊢ ( ( 0 ≤ ( normℎ ‘ 𝐴 ) ∧ 0 ≤ ( normℎ ‘ 𝐵 ) ) → 0 ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
12 |
6 8 11
|
mp2an |
⊢ 0 ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |
13 |
4 12
|
eqbrtri |
⊢ ( abs ‘ 0 ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |
14 |
3 13
|
eqbrtrdi |
⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
15 |
|
df-ne |
⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 ↔ ¬ ( 𝐴 ·ih 𝐵 ) = 0 ) |
16 |
2 1
|
his1i |
⊢ ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) |
17 |
16
|
oveq2i |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
18 |
17
|
oveq2i |
⊢ ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
19 |
1 2
|
hicli |
⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
20 |
|
abslem2 |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ≠ 0 ) → ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
21 |
19 20
|
mpan |
⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
22 |
18 21
|
eqtr2id |
⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) = ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) ) ) |
23 |
19
|
abs00i |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) |
24 |
23
|
necon3bii |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 ↔ ( 𝐴 ·ih 𝐵 ) ≠ 0 ) |
25 |
19
|
abscli |
⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ |
26 |
25
|
recni |
⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
27 |
19 26
|
divclzi |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ) |
28 |
19 26
|
divreczi |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) = ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
29 |
28
|
fveq2d |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) ) |
30 |
26
|
recclzi |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ) |
31 |
|
absmul |
⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ) → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( abs ‘ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) ) |
32 |
19 30 31
|
sylancr |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( abs ‘ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) ) |
33 |
25
|
rerecclzi |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ) |
34 |
|
0re |
⊢ 0 ∈ ℝ |
35 |
33 34
|
jctil |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( 0 ∈ ℝ ∧ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ) ) |
36 |
19
|
absgt0i |
⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 ↔ 0 < ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
37 |
24 36
|
bitri |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 ↔ 0 < ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
38 |
25
|
recgt0i |
⊢ ( 0 < ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) → 0 < ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
39 |
37 38
|
sylbi |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → 0 < ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
40 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ) → ( 0 < ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) → 0 ≤ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
41 |
35 39 40
|
sylc |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → 0 ≤ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
42 |
33 41
|
absidd |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
43 |
42
|
oveq2d |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( abs ‘ ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
44 |
32 43
|
eqtrd |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) = ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) ) |
45 |
26
|
recidzi |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) · ( 1 / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) |
46 |
29 44 45
|
3eqtrd |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) |
47 |
27 46
|
jca |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≠ 0 → ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) ) |
48 |
24 47
|
sylbir |
⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) ) |
49 |
1 2
|
normlem7tALT |
⊢ ( ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) = 1 ) → ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( ( ( ∗ ‘ ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) · ( 𝐴 ·ih 𝐵 ) ) + ( ( ( 𝐴 ·ih 𝐵 ) / ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) · ( 𝐵 ·ih 𝐴 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
51 |
22 50
|
eqbrtrd |
⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
52 |
15 51
|
sylbir |
⊢ ( ¬ ( 𝐴 ·ih 𝐵 ) = 0 → ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
53 |
10
|
recni |
⊢ ( normℎ ‘ 𝐵 ) ∈ ℂ |
54 |
9
|
recni |
⊢ ( normℎ ‘ 𝐴 ) ∈ ℂ |
55 |
|
normval |
⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
56 |
2 55
|
ax-mp |
⊢ ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) |
57 |
|
normval |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
58 |
1 57
|
ax-mp |
⊢ ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) |
59 |
56 58
|
oveq12i |
⊢ ( ( normℎ ‘ 𝐵 ) · ( normℎ ‘ 𝐴 ) ) = ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
60 |
53 54 59
|
mulcomli |
⊢ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) = ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
61 |
60
|
breq2i |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ↔ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) |
62 |
|
2pos |
⊢ 0 < 2 |
63 |
|
hiidge0 |
⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( 𝐵 ·ih 𝐵 ) ) |
64 |
|
hiidrcl |
⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℝ ) |
65 |
2 64
|
ax-mp |
⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℝ |
66 |
65
|
sqrtcli |
⊢ ( 0 ≤ ( 𝐵 ·ih 𝐵 ) → ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ ) |
67 |
2 63 66
|
mp2b |
⊢ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ |
68 |
|
hiidge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) |
69 |
|
hiidrcl |
⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
70 |
1 69
|
ax-mp |
⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℝ |
71 |
70
|
sqrtcli |
⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ) |
72 |
1 68 71
|
mp2b |
⊢ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ |
73 |
67 72
|
remulcli |
⊢ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ∈ ℝ |
74 |
|
2re |
⊢ 2 ∈ ℝ |
75 |
25 73 74
|
lemul2i |
⊢ ( 0 < 2 → ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ↔ ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) ) |
76 |
62 75
|
ax-mp |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ↔ ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
77 |
61 76
|
bitri |
⊢ ( ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ↔ ( 2 · ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) · ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) ) ) |
78 |
52 77
|
sylibr |
⊢ ( ¬ ( 𝐴 ·ih 𝐵 ) = 0 → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) ) |
79 |
14 78
|
pm2.61i |
⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |