Metamath Proof Explorer


Theorem bcsiHIL

Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bcs.1 𝐴 ∈ ℋ
bcs.2 𝐵 ∈ ℋ
Assertion bcsiHIL ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( norm𝐴 ) · ( norm𝐵 ) )

Proof

Step Hyp Ref Expression
1 bcs.1 𝐴 ∈ ℋ
2 bcs.2 𝐵 ∈ ℋ
3 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
4 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
5 4 hhnm norm = ( normCV ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
6 4 hhip ·ih = ( ·𝑖OLD ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
7 4 hhph ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ CPreHilOLD
8 3 5 6 7 1 2 siii ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( norm𝐴 ) · ( norm𝐵 ) )