Step |
Hyp |
Ref |
Expression |
1 |
|
bcth.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) ∧ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑋 ↔ 𝑦 ∈ 𝑋 ) ) |
4 |
|
eleq1w |
⊢ ( 𝑟 = 𝑚 → ( 𝑟 ∈ ℝ+ ↔ 𝑚 ∈ ℝ+ ) ) |
5 |
3 4
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑟 = 𝑚 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ) ) |
6 |
|
simpr |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑟 = 𝑚 ) → 𝑟 = 𝑚 ) |
7 |
6
|
breq1d |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑟 = 𝑚 ) → ( 𝑟 < ( 1 / 𝑘 ) ↔ 𝑚 < ( 1 / 𝑘 ) ) ) |
8 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑟 = 𝑚 ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑟 = 𝑚 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ) |
10 |
9
|
sseq1d |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑟 = 𝑚 ) → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) |
11 |
7 10
|
anbi12d |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑟 = 𝑚 ) → ( ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ↔ ( 𝑚 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
12 |
5 11
|
anbi12d |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑟 = 𝑚 ) → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ) ) |
13 |
12
|
cbvopabv |
⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } = { 〈 𝑦 , 𝑚 〉 ∣ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } |
14 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 1 / 𝑘 ) = ( 1 / 𝑛 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝑚 < ( 1 / 𝑘 ) ↔ 𝑚 < ( 1 / 𝑛 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑀 ‘ 𝑘 ) = ( 𝑀 ‘ 𝑛 ) ) |
17 |
16
|
difeq2d |
⊢ ( 𝑘 = 𝑛 → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) = ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) |
18 |
17
|
sseq2d |
⊢ ( 𝑘 = 𝑛 → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) |
19 |
15 18
|
anbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑚 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ↔ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) |
21 |
20
|
opabbidv |
⊢ ( 𝑘 = 𝑛 → { 〈 𝑦 , 𝑚 〉 ∣ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } = { 〈 𝑦 , 𝑚 〉 ∣ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) } ) |
22 |
13 21
|
syl5eq |
⊢ ( 𝑘 = 𝑛 → { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } = { 〈 𝑦 , 𝑚 〉 ∣ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) } ) |
23 |
|
fveq2 |
⊢ ( 𝑧 = 𝑔 → ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) = ( ( ball ‘ 𝐷 ) ‘ 𝑔 ) ) |
24 |
23
|
difeq1d |
⊢ ( 𝑧 = 𝑔 → ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) = ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) |
25 |
24
|
sseq2d |
⊢ ( 𝑧 = 𝑔 → ( ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) |
26 |
25
|
anbi2d |
⊢ ( 𝑧 = 𝑔 → ( ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ↔ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) ) |
27 |
26
|
anbi2d |
⊢ ( 𝑧 = 𝑔 → ( ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) ↔ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) |
28 |
27
|
opabbidv |
⊢ ( 𝑧 = 𝑔 → { 〈 𝑦 , 𝑚 〉 ∣ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) } = { 〈 𝑦 , 𝑚 〉 ∣ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) } ) |
29 |
22 28
|
cbvmpov |
⊢ ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } ) = ( 𝑛 ∈ ℕ , 𝑔 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑦 , 𝑚 〉 ∣ ( ( 𝑦 ∈ 𝑋 ∧ 𝑚 ∈ ℝ+ ) ∧ ( 𝑚 < ( 1 / 𝑛 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑦 ( ball ‘ 𝐷 ) 𝑚 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑔 ) ∖ ( 𝑀 ‘ 𝑛 ) ) ) ) } ) |
30 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) ∧ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
31 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) ∧ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) → ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) |
32 |
16
|
fveqeq2d |
⊢ ( 𝑘 = 𝑛 → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ↔ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑛 ) ) = ∅ ) ) |
33 |
32
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ↔ ∀ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑛 ) ) = ∅ ) |
34 |
31 33
|
sylib |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) ∧ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) → ∀ 𝑛 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑛 ) ) = ∅ ) |
35 |
1 2 29 30 34
|
bcthlem5 |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) ∧ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) = ∅ ) |
36 |
35
|
ex |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) = ∅ ) ) |
37 |
36
|
necon3ad |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) ≠ ∅ → ¬ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) ) |
38 |
37
|
3impia |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) ≠ ∅ ) → ¬ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) |
39 |
|
df-ne |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ↔ ¬ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) |
40 |
39
|
rexbii |
⊢ ( ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ↔ ∃ 𝑘 ∈ ℕ ¬ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) |
41 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ℕ ¬ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ↔ ¬ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) |
42 |
40 41
|
bitri |
⊢ ( ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ↔ ¬ ∀ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ∅ ) |
43 |
38 42
|
sylibr |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) ≠ ∅ ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ) |