| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bcth.2 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 3 |
|
simprl |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
| 4 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 6 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 7 |
1
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 8 |
5 6 7
|
3syl |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝐽 ∈ Top ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ∪ ran 𝑀 = 𝑋 ) |
| 12 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 13 |
8 12
|
syl |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝑋 ∈ 𝐽 ) |
| 14 |
11 13
|
eqeltrd |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ∪ ran 𝑀 ∈ 𝐽 ) |
| 15 |
|
isopn3i |
⊢ ( ( 𝐽 ∈ Top ∧ ∪ ran 𝑀 ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) = ∪ ran 𝑀 ) |
| 16 |
10 14 15
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) = ∪ ran 𝑀 ) |
| 17 |
16 11
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) = 𝑋 ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → 𝑋 ≠ ∅ ) |
| 19 |
17 18
|
eqnetrd |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) ≠ ∅ ) |
| 20 |
1
|
bcth |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ ∪ ran 𝑀 ) ≠ ∅ ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ) |
| 21 |
2 3 19 20
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ∧ ∪ ran 𝑀 = 𝑋 ) ) → ∃ 𝑘 ∈ ℕ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ≠ ∅ ) |